
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 7469–7502

www.elsevier.com/locate/jcp
Parallel computation of three-dimensional flows
using overlapping grids with adaptive mesh refinement

William D. Henshaw a,*,1, Donald W. Schwendeman b,2

a Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551, United States
b Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States

Received 21 November 2007; received in revised form 14 April 2008; accepted 22 April 2008
Available online 13 May 2008
Abstract

This paper describes an approach for the numerical solution of time-dependent partial differential equations in complex
three-dimensional domains. The domains are represented by overlapping structured grids, and block-structured adaptive
mesh refinement (AMR) is employed to locally increase the grid resolution. In addition, the numerical method is imple-
mented on parallel distributed-memory computers using a domain-decomposition approach. The implementation is flex-
ible so that each base grid within the overlapping grid structure and its associated refinement grids can be independently
partitioned over a chosen set of processors. A modified bin-packing algorithm is used to specify the partition for each grid
so that the computational work is evenly distributed amongst the processors. All components of the AMR algorithm such
as error estimation, regridding, and interpolation are performed in parallel.

The parallel time-stepping algorithm is illustrated for initial-boundary-value problems involving a linear advection–
diffusion equation and the (nonlinear) reactive Euler equations. Numerical results are presented for both equations to dem-
onstrate the accuracy and correctness of the parallel approach. Exact solutions of the advection–diffusion equation are
constructed, and these are used to check the corresponding numerical solutions for a variety of tests involving different
overlapping grids, different numbers of refinement levels and refinement ratios, and different numbers of processors.
The problem of planar shock diffraction by a sphere is considered as an illustration of the numerical approach for the Euler
equations, and a problem involving the initiation of a detonation from a hot spot in a T-shaped pipe is considered to dem-
onstrate the numerical approach for the reactive case. For both problems, the accuracy of the numerical solutions is
assessed quantitatively through an estimation of the errors from a grid convergence study. The parallel performance of
the approach is examined for the shock diffraction problem.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Unsteady euler equations; Reactive flow and detonations; Numerical methods
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2008.04.033

* Corresponding author. Tel.: +1 925 423 2697.
E-mail addresses: henshaw1@llnl.gov (W.D. Henshaw), schwed@rpi.edu (D.W. Schwendeman).

1 This work was performed under the auspices of the US Department of Energy (DOE) by Lawrence Livermore National Laboratory in
part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 and by DOE contracts from the ASCR Applied
Math Program and the ITAPS SciDAC Center.

2 This research was supported by Lawrence Livermore National Laboratory under subcontract B548468, and by the National Science
Foundation under Grants DMS-0532160 and DMS-0609874.

mailto:henshaw1@llnl.gov
mailto:schwed@rpi.edu

7470 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
1. Introduction

We describe an approach for the numerical solution of time-dependent partial differential equations (PDEs)
defined on complex three-dimensional domains. The approach is based on the use of overlapping structured
grids to represent the three-dimensional domains [1]. In a typical grid construction, boundary-fitted curvilinear
grids are overlapped with background Cartesian grids. The use of structured grids and Cartesian grids results
in computationally efficient discretizations of the PDEs. The use of smooth boundary-fitted grids also leads to
accurate approximations of the equations and boundary conditions. Block-structured adaptive mesh refine-
ment (AMR) is incorporated into the overlapping grid framework, and used to locally increase the grid res-
olution of the simulation. Refinement grids are added in a hierarchical fashion to each base grid according to
an estimate of the numerical error, and the positions of the refinement grids are recomputed every few time
steps as the solution evolves. In this way, the numerical approach is especially amenable to PDEs whose solu-
tions exhibit localized fine-scale features such as contact discontinuities, shocks and detonations.

The numerical approach for solving PDEs on overlapping grids with AMR is implemented on parallel dis-
tributed-memory computers using a domain-decomposition approach. The implementation is flexible so that
each base grid within the overlapping grid structure and its associated refinement grids can be independently
partitioned over a chosen set of processors. The partitioning is specified to balance the computational work
across the processors, and this is done using a modified bin-packing algorithm. All elements of the AMR algo-
rithm, such as error estimation, regridding and interpolation, are performed in parallel. The approach we
describe may be used to compute the numerical solution of a wide range of initial-boundary-value problems
(IBVPs) for PDEs. For the purposes of this paper, we consider IBVPs for two specific equations. The first is a
linear advection–diffusion equation, and the second is the (nonlinear) reactive Euler equations of gas dynam-
ics. The first equation provides a useful test case to study the behavior of the numerical approach and to verify
its accuracy quantitatively, while the second builds on our earlier work in [2,3] and illustrates the numerical
approach for a more difficult set of equations. While a brief description of the discretization of these two PDEs
is given, the emphasis of the discussion is on the extension of the numerical approach for parallel computa-
tions in three-dimensional geometries. The main focus of this work is to establish the correctness of the over-
lapping grid parallel AMR algorithm and demonstrate the accuracy of the numerical approximations. An
initial assessment of the performance of the parallel algorithm is also provided.

It is now well established that overlapping grids can be used to solve a wide class of problems efficiently and
accurately. The technique is especially attractive for handling problems with complex geometry, and problems
with moving or deforming boundaries. The first use of overlapping grids (called composite grids at the time)
appeared in papers by Volkov [4,5], who considered approximations to Poisson’s equation in regions with cor-
ners. Other pioneering work includes that of Starius [6–8], Kreiss [9] and Steger and Benek [10] who referred to
the approach as Chimera grids. Since this early work, the overlapping grid technique has been used success-
fully to solve a wide variety of problems in high-speed reactive flow [2,3,11], reactive and non-reactive multi-
material flow [12,13], combustion [14], aerodynamics [15–21], blood flow [22], electromagnetics [37], flows
around ships [23], visco-elastic flows [24] and flows with deforming boundaries [25–27], among others. The
use of AMR in combination with overlapping grids was considered by Brislawn et al. [28], Boden and Toro
[29], Meakin [21], Henshaw and Schwendeman [2,3] and Banks et al. [12,13]. The approach described in this
paper is related to the work of Meakin [17] who considered overlapping grids and AMR in parallel, although
his refinement grids were restricted to the Cartesian background grids and thus his approach is not as general
as the one presented here.

Implementing a parallel-AMR approach in software represents a considerable undertaking. To overcome
this hurdle, there have been a number of AMR software infrastructures developed that support the parallel
solution of PDEs. These include AmrLib/BoxLib [30], Chombo [31], DAGH [32], GrACE [33], PARAMESH
[34] and SAMRAI [35]. A distinguishing feature of the work presented here is our support for AMR on cur-
vilinear overlapping grids. As mentioned earlier, curvilinear grids are particularly useful to accurately repre-
sent boundaries. As the grids are refined, the original definition of the boundary-surface is evaluated to define
the grid points at a high resolution. In our work we are able to represent complex three-dimensional geome-
tries in a wide variety of ways, including, for example, analytically defined surfaces (such as cylinders and
spheres) as well as splines and NURBS [36].

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7471
The software used to generate the results presented in this paper is freely available.3 The parallel-AMR
components that support regridding, interpolation, error estimation, etc. are part of a software toolkit within
Overture, a object-oriented software package for the numerical solution of PDEs on overlapping grids. These
component may be downloaded and used to solve many different types of equations. The AMR toolkit capa-
bilities are accessed through a high-level C++ interface which we describe later. The amrh program within the
Overture distribution solves advection–diffusion equations, and this program provides a demonstration of the
use of this high-level interface. The PDE solver for the reactive Euler equation is called cgcns, and is also avail-
able from the Overture web site. It is part of the CG suite of solvers, which includes programs for solving a
variety of PDEs such as the incompressible Navier–Stokes equations and Maxwell’s equations, among others.
(These latter two PDE solvers may be run in parallel but do not yet support AMR.)

The remaining sections of the paper are organized as follows: in Section 2, we introduce the general form of
the initial-boundary-value problem for which the numerical approach may be applied, but then consider spe-
cific cases involving an advection–diffusion equation and the reactive Euler equations. This is followed in Sec-
tion 3 by an overview of the overlapping grid approach with AMR. The details of the extension of the
numerical approach for parallel computing are described in Section 4. In this section, we discuss parallel dis-
tributed arrays and their use in defining grids and grid functions. We also discuss parallel-AMR operations
and our load-balancing algorithm in this section. Section 5 provides a brief description of the discretizations
of the advection–diffusion equation and the reactive Euler equations on mapped grids. Numerical results are
presented in Section 6. Here, we solve the advection–diffusion equations with forcing functions chosen so that
exact solutions may be constructed a priori. We show that the error in the numerical solutions is independent
of the number of processors. We also show that the error is independent of the number of refinement levels
and refinement ratios provided the effective resolution on the finest grids are commensurate. In this section, we
also solve the reactive Euler equations and validate the parallel-AMR approach for the problem of a planar
shock diffracted by a sphere. For this problem, we also examine the behavior and scalability of the parallel
approach. As a final calculation presented in Section 6, we consider a reactive flow problem involving the ini-
tiation of a detonation from a hot spot in a complex three-dimensional domain which takes the form of a T-
shaped pipe. Finally, conclusions drawn from the our work are discussed in Section 7.

2. Model equations

We are interested in computing numerical solutions to well-posed initial-boundary-value problems (IBVPs)
for time-dependent partial differential equations (PDEs) of the general form
3 htt
ou
ot ¼ Lðu; x; tÞ; t > 0; x 2 X;

u ¼ u0ðxÞ; t ¼ 0; x 2 X;

Bðu; x; tÞ ¼ 0; t > 0; x 2 oX;

8<: ð1Þ
where L is a differential operator involving spatial derivatives. The equations are to be solved for t > 0 on a
domain X in three space dimensions with boundary oX. The solution u ¼ uðx; tÞ is a vector with m compo-
nents, and is a function of the independent variables x 2 R3 and t 2 R. The initial conditions for u are given
by u0ðxÞ and the boundary conditions are Bðu; x; tÞ ¼ 0, where B is a boundary operator involving, possibly,
derivatives of u is the direction normal to oX.

We consider two special cases of the general IBVP given in Eq. (1). The first involves a relatively simple
advection–diffusion equation. The IBVP for this first case has the form
ou
ot þ a � ru ¼ mDuþ f ðx; tÞ; t > 0; x 2 X;

u ¼ u0ðxÞ; t ¼ 0; x 2 X;

u ¼ gðx; tÞ; t > 0; x 2 oX;

8><>: ð2Þ
where u ¼ uðx; tÞ is a scalar function, a ¼ aðx; tÞ 2 R3 is a given velocity, m > 0 is a constant diffusivity and
f ðx; tÞ is a given forcing function. The boundary conditions are taken to be of Dirichlet type but this is not
p://www.llnl.gov/casc/Overture.

http://www.llnl.gov/casc/Overture

7472 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
essential. This linear IBVP with m ¼ 1 components is particularly useful as a simple test case to study the
behavior of our parallel approach involving adaptive mesh refinement on overlapping grids, and to verify
the accuracy of the numerical results.

The second special case involves a more difficult set of equations given by the reactive Euler equations. This
set of equations was considered in our previous papers [2,3] for two-dimensional flow in stationary and mov-
ing domains. Here, our focus is on reactive and non-reactive flow in three dimensions for which we consider
the nonlinear conservation equations given by
ou

ot
þ o

ox1

f1ðuÞ þ
o

ox2

f2ðuÞ þ
o

ox3

f3ðuÞ ¼ hðuÞ; ð3Þ
where
u ¼

q

qv

E

qY

26664
37775; fn ¼

qvn

qvnvþ pen

vnðE þ pÞ
qvnY

26664
37775; n ¼ 1; 2; 3; h ¼

0

0

0

qR

26664
37775: ð4Þ
The symbols here have their usual meaning, namely, q is density, v ¼ ðv1; v2; v3Þ is velocity, p is pressure and E

is the total energy. For the reactive case, the flow is a mixture of mr species whose mass fractions are given by
Y. The source term models the chemical reactions and is described by a set of mr rates of species production
given by R ¼ RðuÞ. The total energy is taken to be
E ¼ p
c� 1

þ 1

2
qjvj2 þ qq; ð5Þ
where c is the ratio of specific heats and q ¼ qðYÞ represents the heat energy due to chemical reaction. The
number of components in the equations is m ¼ 5þ mr, but this reduces to m ¼ 5 for the non-reactive case
where we omit the mr species equations in (4). The initial conditions for (3) are uðx; 0Þ ¼ u0ðxÞ and the bound-
ary conditions consist of inflow, outflow or solid-wall conditions as needed for each specific problem consid-
ered (see Sections 6.2 and 6.3).

3. Overlapping grids with adaptive mesh refinement

In this section, we give an overview of our general approach for solving initial-boundary-value problems of
the type given in (1) on overlapping grids with adaptive mesh refinement (AMR). The description here builds
primarily on the previous discussion given in [2] for solving IBVPs in two space dimensions. Since the numer-
ical framework for solving problems in three space dimensions is similar, we will only outline the main ele-
ments of the approach here and refer the reader to our previous paper for further details. Once the general
framework is established, we proceed in the next section to describe the extension of the numerical approach
for parallel computations. It is worth noting that while the present discussion focuses on solving the IBVP
given in (1), and the equations in (2) and (3) in particular, the numerical approach outlined here is more gen-
eral and may be used to handle a wide range of time-dependent problems, such as those for the second-order
Maxwell equations [37] and problems involving moving boundaries [3].

3.1. Overlapping grids

An overlapping grid G for X consists of a set of N grid component grids Gg, i.e.
G ¼ fGgg; g ¼ 1; 2; . . . ;N grid:
The component grids overlap and cover X. Each component grid is a logically rectangular, curvilinear grid
defined by a smooth mapping Cg from parameter space r (e.g. the unit-cube in three dimensions) to physical
space x:
x ¼ CgðrÞ; r 2 ½0; 1�3; x 2 R3:

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7473
The mapping is used to define grid points at any desired resolution as required when a grid is refined. Variables
defined on a component grid, such as the coordinates of the grid points, are stored in rectangular arrays. For
example, grid vertices are represented as the array
Fig. 1
corresp
and co
web ve
xg
i : grid vertices; i ¼ ði1; i2; i3Þ; ia ¼ 0; . . . ;N a; a ¼ 1; 2; 3;
where N a is the number of grid cells in the a-coordinate direction. We note that grid vertex information and
other mapping information are not stored for Cartesian grids. This usually results in a considerable savings in
memory use since most of the grid points belong to Cartesian grids for a typical overlapping grid.

Fig. 1 shows a simple overlapping grid consisting of two component grids, a cylindrical grid and a back-
ground Cartesian grid. The top view shows the overlapping grid in physical space while the bottom views show
each component grid in its parameter space. In this example, the cylindrical grid cuts a hole in the Cartesian
grid so that the latter grid has a number of unused points. The other points on the component grids are clas-
sified as either discretization points (where the PDE or boundary conditions are discretized) or interpolation
points. This information is supplied by the overlapping grid generator Ogen [38] and is held in an integer mask
array. (In fact the bit representation of each element of the mask holds additional grid information including,
for example, which points are hidden by refinement grids.) In addition, each boundary face of each component
grid is classified as either a physical boundary (where boundary conditions are to be implemented), a periodic
boundary or an interpolation boundary, and this information is held in the array bcðb; aÞ, where b ¼ 1; 2
denotes the boundary side. Typically, one or more layers of ghost points are created for each component grid
to aid in the application of boundary conditions.

Solution values at interpolation points of a grid Gg, for example, are determined by interpolation from
donor points on another grid Ggd

. The donor points are required to be either discretization points or interpo-
lation points. An interpolation formula is said to be explicit if the donor points are all discretization points. If
some donor points are themselves interpolation points then the interpolation is said to be implicit. Explicit
interpolation is simpler, but the width of the overlap required is wider than that for implicit interpolation.
Either choice is available in Ogen, but for the present work we use explicit interpolation for efficiency in
. Three-dimensional overlapping grid for a quarter-cylinder in a box: overlapping grid in physical space (top view) and the
onding component grids on the unit cube in parameter space (bottom views). Interpolation points at the grid overlap are marked

lor-coded for each component grid. (For interpretation of the references to colour in this figure legend, the reader is referred to the
rsion of this article.)

7474 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
our parallel algorithm (see Section 4). For each interpolation point xi on grid Gg, its corresponding parameter
space coordinates, rj ¼ C�1

gd
ðxiÞ, on donor grid Ggd

may be found using the inverse mapping. In the parameter
space of the donor grid, standard tensor-product polynomial interpolation is used about the point rj. For first-
order hyperbolic systems, such as the reactive Euler equations in (3), linear interpolation is sufficient for
second-order accuracy. For second-order parabolic systems, such as the advection–diffusion equation in
(2), quadratic interpolation is needed for second-order accuracy; see the discussion in Chesshire and Henshaw
[1] for further details.
3.2. Adaptive mesh refinement

The adaptive mesh refinement (AMR) approach is designed to locally increase the grid resolution where an
estimate of the error is large. This is done by adding refined grid patches to the existing base-level component
grids. The refinement grids are aligned with the underlying base grid (i.e. the refinement is done in parameter
space) and are arranged in a hierarchy with the base grids belonging to level ‘ ¼ 0, the next finer grids being
added to level ‘ ¼ 1 and so on. Grids on level ‘ are refined by a refinement ratio nr from the grids on level
‘� 1. The grids are properly nested so that a grid on level ‘ is completely contained in the set of grids on
the coarser level ‘� 1. This requirement is relaxed at physical boundaries to allow refinement grids to align
with the boundary.

For simplicity the numerical solution on all grids is advanced in time using the same time step. After every
nregrid time steps, the whole refined-grid hierarchy is rebuilt to accommodate the evolution of sharp features of
the solution. This is done by first re-computing an estimate of the error given by
ei ¼
Xm

k¼1

ek;i þ si; ð6Þ
where si is an estimate of the truncation error in the integration of the reactive source term for the PDEs in (3),
see Section 5.2, and
ek;i ¼
1

3

X3

a¼1

c1

sk
jD0aU k;ij þ

c2

sk
jDþaD�aU k;ij

� �
: ð7Þ
In (7), D0a;Dþa and D�a are the centered, forward and backward undivided difference operators in the a index
direction, respectively, U k;i is the kth component of the numerical solution for u at grid index i; sk is a scale
factor for component k, and c1 and c2 are weights. The error estimate used here follows that introduced in
[2] and has been found to be an effective choice, although other methods are possible. Once the error estimate
is computed, it is smoothed and then grid points are tagged for refinement where ei is greater than a chosen
tolerance. Buffer points are added to increase the region of tagged points slightly (so that fewer regrids are
needed), and a new overlapping grid hierarchy is build to cover the buffered region of tagged points. (Typi-
cally, the width of the buffer is taken to be 2 so that nregrid ¼ 2nr, see [2].) The numerical solution is then trans-
ferred from the old grid hierarchy to the new one, and the time-stepping proceeds for the solution on the new
grid hierarchy until the next gridding step.
3.3. Time-stepping algorithm

For later reference, we show in Fig. 2 the basic time-stepping algorithm for the numerical solution of the
IBVP in (1) on a overlapping grid G. The algorithm begins by specifying the initial conditions given by u0ðxÞ
for the numerical solution on G. The time-stepping loop performs a numerical integration of the equations
from t ¼ 0 to a specified time tfinal. Within this loop there are a number of steps that perform an AMR regrid
once every nregrid time steps as outlined above. A value for the global time-step increment, Dt, is computed
every time step based on a suitable stability constraint for the equations, e.g. a CFL stability constraint for
the reactive Euler equations. The numerical integration of the governing equations from t to t þ Dt, based
on a chosen discretization of the equations on G, is performed by the function advancePDE. For the

Fig. 2. The basic time-stepping algorithm for the numerical solution of the IBVP in (1) on a overlapping grid G.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7475
advection–diffusion equations in (2) this discretization consists of centered, second-order accurate differences
in space, and a Runge–Kutta integration, either second or fourth order, in time. In the case of the reactive
Euler equations in (3), a fractional-step method is used which involves a second-order accurate extension
of Godunov’s method for the convective part of the equations in one step and a Runge–Kutta scheme for
the reactive source terms in the other step. Further details of these schemes are given in Section 5. Once
the solution at all discretization points on G is found at the new time, the solution is communicated to other
component grids via interpolation at the grid overlap. Finally, a numerical approximation of the boundary
conditions, Bðu; x; tÞ ¼ 0, is applied on the boundary of the overlapping grid G, and this is done in the function
applyBoundaryConditions.

The basic time-stepping algorithm in Fig. 2 is the same whether the problem is run in parallel or not. How-
ever, for the parallel case there are a number of issues for many of the steps in the algorithm that require fur-
ther discussion. We address these issues in the next section.

4. Parallel approach for overlapping grids with AMR

With the basic framework in hand for solving an initial-boundary-value problem for a PDE on an overlap-
ping grid with AMR, we are now in a position to describe the extension of this framework for parallel com-
putations. The extension is a domain-decomposition approach in which each component grid belonging to the
overlapping grid is partitioned across different processors of a distributed-memory parallel computer as illus-
trated in Fig. 3. The sample overlapping grid in the figure, shown in two dimensions for simplicity, consists of
component grids labeled G1 and G2 at the base level, with G2 cutting a hole in G1, and refinement grids labeled
G3 and G4. Each component grid is partitioned over a contiguous range of processors, e.g. p ¼ f3; 4; 5g for G3.
Grid functions defined on each component grid are partitioned in the same way as their component grid. Field
data in a grid function, which may be distributed across several processors, is stored in a multi-dimensional
P++ array. The P++ array, as described below, handles the updating of field data at ghost points associated
with internal boundaries between processors. In addition, communication is needed between processors
to update interpolation points at the overlap between grids (the grid points marked with small squares in
Fig. 3) and to handle AMR interpolation involving values on refinement grids. These issues, as well as a
method of load balancing, are described in detail in the sections below.

Fig. 3. Each base grid or refinement grid can be distributed over a contiguous range of processors. In this example the base grid G1 is
distributed over processors {0,1}, the base grid G2 over processor {4}, the refinement grid G3 over processors {3,4,5} and the refinement
grid G4 over processors {6,7}.

7476 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
4.1. P++ distributed arrays

A basic tool for our parallel approach is the P++ array class [39], a C++ class that can be used to represent
distributed multi-dimensional arrays. Each P++ array can be independently partitioned across a set of pro-
cessors. A distributed P++ array consists of a set of serial arrays, one serial array for each processor. Each
serial array is a multi-dimensional array that can be manipulated using various array operations. The data
from a serial array can also be passed to Fortran subroutines, which is useful to define optimized computa-
tional kernels, such as the discretization of a PDE representing an integration over a time step. When running
in parallel, the serial arrays contain extra ghost values that hold copies of the data from the serial arrays on
neighboring processors. The P++ array class is built on top of the Multiblock PARTI parallel communication
library [40], which is used for updating the values on ghost boundaries from neighboring processors. All par-
allel communication is performed using the Message Passing Interface, MPI [41].

A P++ array can have up to six dimensions. A typical vector solution field, for example, resides in a four-
dimensional array uði1; i2; i3; kÞ, where ði1; i2; i3Þ are the coordinate dimensions in index space and k is the com-

ponent dimension that specifies the different components, e.g. q; qv1; qv2, etc. for the reactive Euler equations.
Each array dimension can be a distributed dimension or not. If an array dimension is distributed, then it may
be split across processors. For the solution vector field, uði1; i2; i3; kÞ, the three coordinate dimensions are dis-
tributed while the component dimension is not. For each distributed dimension, we specify the width of the
parallel ghost boundary according to the width of the stencil in the discretization of the PDE. For example, a
stencil width of 2qþ 1 generally requires q layers of ghost points.

For the version4 of Multiblock PARTI we use, a P++ array must be distributed over a contiguous range of
process numbers (as in Fig. 3). In addition, the array is partitioned in a regular tensor-product fashion with
each distributed dimension being split into na processors, where the total number of processors is the productQd

a¼1na for d distributed dimensions. Thus, for example, if we have an array u(0:35, 0:35, 0:35, 0:5) partitioned
over n1 � n2 � n3 ¼ 4� 3� 2 ¼ 24 processors, then the first processor would have a corresponding serial
array with dimensions u(0:8, 0:11, 0:17, 0:5), excluding ghost points. (The arrays on other processors would
have the same size but with offset values for the coordinate bases and bounds.) If one layer of ghost points
had been requested in each coordinate dimension, then the actual serial array would be dimensioned as
u(�1:9, �1:12, �1: 18, 0:5).

The properties of the parallel distribution of a P++ array are contained in a separate partitioning object
defined by the Partitioning_Type class. The partitioning object contains information on the ghost
4 The latest version of PARTI can partition arrays in a more general fashion.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7477
boundary widths, which dimensions are distributed, and the set of processors used. Generally one partitioning
object can be shared by many arrays. The partitioning object hides the fact that we are using Multiblock
PARTI and thus would allow the use of other partitioning libraries without changes to the higher-level code.

Fig. 4 presents some C++ code that illustrates the use of P++ arrays. In this code, a partitioning object is
defined and its parameters are specified. A multi-dimensional P++ array u is built based on the partitioning
object and its values are assigned (all to be 6 in the example). Next, the array values are changed using a high-
level operation that automatically performs parallel updates of ghost values. We also show how to access the
local serial array and its array bounds. We then illustrate an array operation involving the serial array and
show how its data may be passed to a Fortran subroutine. After the serial data has been manipulated by
the Fortran routine, the parallel ghost boundaries are updated explicitly in the sample code.

For efficiency, we usually avoid using high-level P++ array operations since these operations generally use
message passing for each array statement. Instead, we typically operate on the local serial arrays directly.
These are passed to optimized Fortran kernels, as mentioned earlier and illustrated in Fig. 4, which are fol-
lowed by an explicit call to the ghost-boundary-update function that synchronizes the data at the parallel
ghost boundaries.

4.2. Distribution of grids and grid functions

Grid functions hold field data such as the density, momenta or energy. A grid function defined on the entire
overlapping grid (including all refinement grids) is represented by a C++ object defined by the realCompos-
iteGridFunction class. A realCompositeGridFunction consists of a collection of objects defined by
the realMappedGridFunction class, and these latter objects contain field data on the component grids,
either on the base level or on refinement levels. The data in a realMappedGridFunction is stored in a
Fig. 4. Sample C++ code showing the use of the P++ distributed arrays.

7478 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
P++ array. An overlapping grid, such as the one in Fig. 3, is represented by an object defined by the Com-
positeGrid class and consists of a collection of MappedGrid objects. A MappedGrid represents a com-
ponent grid and contains grid functions that hold geometric information, such as the grid vertices and the
metric terms ox=or of the mapping x ¼ CgðrÞ. Each grid function is associated with a corresponding grid,
so, for example, a realCompositeGridFunction has a pointer to a CompositeGrid while a real-

MappedGridFunction has a pointer to a MappedGrid. In a parallel setting, we associate a single parallel
partition with each MappedGrid, and all grid functions belonging to this object are partitioned in the same
way. Thus, the arrays local to each processor have the same size for all grid functions belonging to a given
grid. This allows efficient operations, with reduced communication costs, between grid functions associated
with the same grid. Different grids, however, are allowed to have different partitions. We note that other par-
allel-AMR frameworks may require each refinement grid to be partitioned over a single processor (SAMRAI
[35], Chombo [31] and Paramesh [34]), while some may require refinement grids to be on the same processor as
the parent grid (DAGH [32]). Our approach employs a more general strategy where each grid can be indepen-
dently partitioned over multiple contiguous processors. It is then left to the load balancer to efficiently distrib-
ute the grids over the processors.

4.3. Interpolation

There are a number of forms of interpolation and transfers of solution values between grids that occur dur-
ing the time-stepping algorithm in Fig. 2. These include interpolation at overlapping-grid boundaries, inter-
polation of refinement-grid boundaries and interpolation between coarse and fine grids, as mentioned in
Section 3. These interpolation steps generally require communication between processors. Here, we discuss
how these interpolation steps are performed in parallel.

4.3.1. Overlapping grid interpolation

On the boundaries where grids overlap, the solution value at an interpolation point xi of grid Gg is inter-
polated from values on a donor grid Ggd

using the interpolation formula
U ðgÞi ¼
X

m

ci;mU ðgd Þ
jþm; m ¼ ðm1;m2;m3Þ; 0 6 ma 6 w� 1: ð8Þ
Here, w is the width of the interpolation stencil, U ðgÞi represents the solution value at an interpolation point on
Gg, and U ðgd Þ

jþm represents solution values on Ggd
. The weights ci;m are determined from a tensor product La-

grange interpolant [1]. In a distributed-memory parallel computation, the value U ðgÞi of an interpolation point
is usually located on a different processor from the donor values U ðgd Þ

jþm. We choose the width of the parallel
ghost boundaries to be at least bw=2c so that all solution information needed by the right-hand side of (8)
can be evaluated on a single processor without the cost of communication with other processors. Thus, we
can first evaluate the right-hand-side sums of (8) on each processor ps (source processor) that owns the relevant
donor values. The resulting sums for the source processors are then sorted into sets based on the destination

processor pd that owns the associated interpolation value U ðgÞi . In this scheme, each processor ps sends at most
one message (containing the sums) to any other processor, pd . The destination processor unpacks the messages
it receives from other processors and then assigns the values to its interpolation points. All the overlapping
grid interpolation points can thus be evaluated with a minimal number of messages, and these messages
are small since we only pass the interpolation sums.

The location of overlapping grid interpolation points on base-level grids is determined initially when the
overlapping grid is generated. This information remains static during the computation and thus the commu-
nication schedules (i.e. information on the size and type of messages that will be sent/received) for transferring
the interpolation sums described above can be determined once. On the other hand, the locations of overlap-
ping grid interpolation points on refinement grids and the classification of points on refinement grids as dis-
cretization/interpolation/unused (as in the base-level grids in Fig. 1) is not static, and must be determined at
each AMR regrid step. This determination is done in parallel and requires the communication of information
between neighboring base grids. The locations of some of the new interpolation points (those not co-incident
with base-grid interpolation points) are computed by inversion of the mapping, Cg, as discussed in Section 3,

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7479
and this inversion may require communication depending on the representation of the mapping. A mapping
for an annulus, for example, can be inverted directly from an analytic formula and thus requires no commu-
nication. Conversely, a mapping defined by interpolating a distributed set of data points may require commu-
nication to invert. Once the new overlapping grid interpolation points are found on refinement levels, the
communication schedules can be determined to efficiently evaluate these interpolation points.

4.3.2. AMR interpolation

At each step in the time-stepping algorithm, values on refinement grid boundaries are interpolated from
neighboring refinement grids on the same refinement level (requiring just a copy of values) or from grids at
the coarser level (requiring interpolation). This AMR-boundary-interpolation may require communication
between processors since each grid can have its own parallel distribution. For each refinement grid we deter-
mine how to interpolate its ghost boundary values from other grids. This is done by intersecting the box (in
index space) that covers the ghost values on a given boundary with the index box for neighboring refinement
grids. (Here, we only consider interpolation from grids belonging to the same base grid, and thus these grids
will use the same index space.) Ghost points that cannot be copied from grids at the same refinement level are
instead interpolated from grids at the next coarser level. Since this interpolation process is somewhat compli-
cated, we have first implemented it by a straightforward extension of the algorithm we use for serial compu-
tations, which has been tested extensively. The computations presented in later sections of this paper use this
extension, and the correctness and accuracy of the method is checked carefully. We recognize, however, that
this initial parallel implementation is not especially efficient since separate messages are passed when interpo-
lating each refinement grid, and this inefficiency plays a role in our study of the scalability of parallel compu-
tations with AMR (see Table 9 in Section 6.2). As a future optimization, we will determine a composite
communication schedule for AMR-boundary-interpolation so that these smaller messages are merged into
a fewer number of larger messages.

When the locations of the AMR grids are recomputed (every nregrid time steps) it is necessary to transfer
solution values from the old AMR grid hierarchy to the new grid hierarchy. We call this process the refine-

ment-grid-transfer step. For each refinement grid on the new hierarchy, we determine the intersection of grids
(from the same base grid) on the old hierarchy, and then copy or interpolate the best available solution data.
The parallel distribution of the old grids can, in general, be completely different from the distribution of the
new grids, and thus there can be significant communication required to update the solution values of the new
grid hierarchy. As in the above case for AMR-boundary-interpolation, we have implemented the refinement-
grid-transfer step in parallel by first extending our well-tested serial algorithm. In the future this step also
needs to be optimized to reduce the number of messages.

4.4. AMR regridding

The basic procedure for AMR regridding for overlapping grids was described briefly in Section 3.2. The
first step in the procedure involves computing an estimate of the error, and this step is done in parallel and
requires communication across processors. The basic error estimate given in (7) can be computed with no
communication, but smoothing the error requires some communication as it may be viewed as taking a
few time steps in the integration of a heat equation on an adaptively-refined overlapping grid. The error-
smoothing step thus applies a version of the interpolate and applyBoundaryConditions functions in the time-
stepping algorithm given in Fig. 2. The error estimate is a scalar grid function which does not need to be
computed on the finest refinement level. Thus, the error-estimation step is usually less expensive than taking
a time step in solving the PDE in (1).

The AMR regridding algorithm uses the smoothed error estimate to determine the location of refinement
grids. The clustering algorithm, an extension of the algorithm of Berger and Rigoutsos [42], determines a set of
non-overlapping boxes that cover the grid cells tagged by the error estimator [2]. The boxes are computed in
the index space of the grid so that in physical space the refinement grids align with the curvilinear grid lines.
The algorithm begins by enclosing all tagged cells in a single box. This box is split into two parts which
are then enclosed in two new (smaller) boxes. The algorithm continues to recursively divide the boxes until
the boxes are sufficiently filled with tagged cells. The algorithm for serial computers was extended in a

7480 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
straightforward manner to parallel computers. The basic operation of finding the bounding box for a set of
tagged cells can be accomplished by first computing a bounding box for the portion of the grid on each pro-
cessor and then merging these results. Our current implementation of the clustering algorithm may need to be
improved when running on thousands of processors. Gunney et al. [43], for example, discuss some of the issues
involved in getting clustering algorithms to work efficiently on Oð105Þ or more processors by reducing global
communication and increasing task parallelism.

4.5. Load balancing

There are a variety of approaches that can be used to balance the workload for AMR computations. These
approaches include the use of space-filling curves, bin-packing algorithms, spatial-bisection algorithms, or a
combination thereof [44,45]. It is also possible to use an adaptive technique that chooses the best algorithm
from amongst a collection of different algorithms [46]. In general, a load-balancing algorithm must take into
account the situation when the workloads on some grid points are much larger than other points, as might
occur in chemically reactive flows with many species [47]. We have developed a modified bin-packing algo-
rithm for load balancing that divides each grid into a contiguous range of processors (as described below).
In the future we expect to enhance this algorithm and make use of other available methods. Our software
is designed so that other load-balancing algorithms can be added easily.

For our purposes here, we consider the load-balancing problem to be a bin-packing problem, where each
processor represents a bin and the problem is to fill the bins so that the workload is evenly distributed amongst
the bins. Let W g; g ¼ 1; 2; . . . ;N grid, denote the given workload for grid g. This value is determined by the
PDE application and could, for example, be a relative measure of the number of floating-point operations
required per time step for all points on the grid. For the applications considered in this paper, we assume that
the computational work per grid point is uniform so that W g is simply the number of discretization points for
grid g. Let W ¼

P
gW g=Nproc denote the average workload per processor. If the sum of workloads assigned to

processor p is wp, then the maximum imbalance, I , is defined as
I ¼ max
06p6Nproc�1

jwp=W � 1j; ð9Þ
so that I ¼ 0 corresponds to a perfectly balanced problem. Thus, the basic goal of the load-balancing algo-
rithm is to fill the bins so that I is as small as possible.

If we assign each grid to just one processor, then the load-balancing problem may be defined as follows:
Given a set of N grid workloads fW gg and a set of N proc bins (processors), assign workloads to the bins to min-
imize I . However, since we have the flexibility to distribute any grid over multiple processors, we consider the
following generalized load-balancing problem: allow each workload to be split into Mg equal parts,
1 6 Mg 6 Nproc. Find a bin-packing distribution such that I 6 I T , where I T > 0 is a tolerance on the maxi-
mum load imbalance, and such that the total number of blocks,

P
gMg, is minimized. Bin-packing algorithms

are NP hard and are often solved approximately with heuristic algorithms. We use a generalized bin-packing
algorithm with adjustments made to take into account that grids can be split across a contiguous range of
processors. We do not explicitly take communication costs into account.

The load-balancing algorithm we use is given in Fig. 5. The basic best fit decreasing bin-packing algorithm
would start by sorting the workloads from largest to smallest. The grids are assigned to processors (each pro-
cessor being a bin) starting from the grid with the largest workload and successively adding each workload to
the processor that currently has the least total workload. In the generalized situation, each grid can be split
into Mg blocks and distributed over a contiguous range of Mg processors. A problem is to decide how to
choose Mg for each grid. We want to avoid splitting a grid into too many small blocks, since this would likely
increase communication costs. We define a split factor g; 0 6 g < 1, that determines the degree to which a grid
is split with Mg ! Nproc as g! 0. We base our splitting decision on the average workload per processor, W .
The ratio W g=W indicates what fraction of an optimal-size bin that grid g would fill, if grid g were not split.
We begin by guessing that a grid should be split into blocks that fill at most half of a bin, g ¼ 1

2
, giving

Mg � W g=ðgW Þ. (In practice we actually choose Mg more carefully as a product of integers, Mg ¼ m1m2m3,
so that the resulting grid partitions have a more equal number of grid points in each coordinate direction.)

Fig. 5. Algorithm to load balance a collection of grids with workloads given by W g; g ¼ 1; . . . ;N grid, over N proc processors when each grid
can be split into Mg blocks and distributed over a contiguous range of processors.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7481
After splitting a grid into Mg blocks we then find a contiguous set of Mg bins to fill by choosing the set of
contiguous bins that currently has the minimal sum of workloads. After we have filled the bins we check
how well the work has been balanced. If the maximum imbalance is larger than the tolerance, I T , we decrease
g and try again. We note that as g! 0, eventually all grids would be split across all processors resulting in a
perfect balance. Of course the communication costs are likely to be higher in this case so that we prefer having
fewer blocks with more work per block.

5. Discretization of the governing equations

We now turn to a discussion of the discretization of the governing equations in (1) for an overlapping grid
G. In general, the overlapping grid consists of a set of component grids, Gg; g ¼ 1; 2; . . . ;N grid, which includes
grids on the base level and possibly grids on refinement levels. As mentioned previously, each component grid
is defined by a smooth mapping Cg from parameter space r to physical space x. The basic strategy is to con-
sider a generic grid Gg with its known mapping x ¼ CgðrÞ, and first make an exact change of variables from
ðx; tÞ to ðr; tÞ in the governing equations. Once this is done, the mapped equations are approximated using a
suitable method of discretization as we discuss below for the case of the linear advection–diffusion equation in
Section 5.1 and for the nonlinear reactive Euler equations in Section 5.2.

5.1. Discretization of the advection–diffusion equation

The advection–diffusion equation in (2) is discretized in a straightforward manner. The first and
second derivatives with respect to x are changed to derivatives with respect to r using the chain-rule
formulas
ou
oxj
¼
X3

a¼1

ora

oxj

ou
ora

7482 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
and
o
2u

ox2
j
¼
X3

a1¼1

X3

a2¼1

ora1

oxj

ora2

oxj

o
2u

ora1
ora2

þ
X3

a¼1

o
2ra

ox2
j

ou
ora
for j ¼ 1; 2; 3. The mapped equations are then discretized in space using standard second-order, centered dif-
ferences. The resulting ODEs have the form
d

dt
U iðtÞ þ a � rhU iðtÞ ¼ mDhU iðtÞ þ fiðtÞ; ð10Þ
where rh and Dh denote discrete approximations for the gradient and Laplacian operators on the mapped grid
for a representative mesh spacing h;U iðtÞ is an approximation for uðxi; tÞ, and fiðtÞ is the forcing function eval-
uated on the grid. Eq. (10) is applied at all valid interior points. The values of the solution at valid points on
physical boundaries are specified by Dirichlet boundary conditions. The values of U iðtÞ at interpolation points
are obtained by interpolation from another component grid. For the latter case, quadratic interpolation is
used to maintain second-order accuracy since the equations involve second-order derivatives (see [1]). Finally,
the ODEs in (10) are advanced in time using either a second-order or a fourth-order accurate Runge–Kutta
scheme.

5.2. Discretization of the reactive Euler equations

The discretization of the reactive Euler equations in (3) follows the approach discussed in [2] for two-dimen-
sional flow on stationary domains, and in [3] for moving domains. Here, we describe briefly an extension of the
approach to handle three-dimensional flow. As in the previous case for the advection–diffusion equations, the
governing equations are mapped to parameter space assuming a known mapping given by x ¼ CgðrÞ, but for
this case special care is used to maintain a conservation form. These mapped equations are
ou

ot
þ 1

J
o

or1

f̂1ðuÞ þ
1

J
o

or2

f̂2ðuÞ þ
1

J
o

or3

f̂3ðuÞ ¼ hðuÞ; ð11Þ
where J is the Jacobian of the transformation matrix ½xr� and the mapped fluxes ðf̂1; f̂2; f̂3Þ are given in terms of
the original flux functions in (4) by
f̂aðuÞ ¼ sa;1f1ðuÞ þ sa;2f2ðuÞ þ sa;3f3ðuÞ; a ¼ 1; 2; 3: ð12Þ

The metrics si;j in (12) are components of matrix S ¼ J ½rx� ¼ J ½xr��1, i.e.
s1;1 ¼ det

ox2

or2

ox2

or3

ox3

or2

ox3

or3

" #
; s1;2 ¼ det

ox3

or2

ox3

or3

ox1

or2

ox1

or3

" #
; s1;3 ¼ det

ox1

or2

ox1

or3

ox2

or2

ox2

or3

" #
; etc:
The mapped flux f̂aðuÞ represents the flux of u across the surface ra ¼ constant. Finally, the source term hðuÞ in
(11) is determined by the reaction rate and its form is given in (4).

We discretize (11) on a uniform grid with grid spacings Dra; a ¼ 1; 2; 3. Let
UiðtÞ ¼
1

Dr1Dr2Dr3

ZZZ
V i

uðr; tÞdr
denote the average of u over a grid cell V i of width ðDr1;Dr2;Dr3Þ about the point ri. The cell average of u is
advanced from a time t to t þ Dt using the second-order fractional-step method
Uiðt þ DtÞ ¼ ShðDt=2ÞSf ðDtÞShðDt=2ÞUiðtÞ; ð13Þ

where Sh and Sf are operators representing discretizations of the source term and the hydrodynamic terms of
(11), respectively, and where Dt is a global time step determined for all component grids by a CFL condition as
discussed below.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7483
The two reaction steps in (13) are performed by solving the ordinary differential equations
o

ot
u ¼ hðuÞ; ð14Þ
over a time interval Dt=2. These equations reduce to the system of mr ODEs
o

ot
Y ¼ R with ðq; qv;EÞ held fixed; ð15Þ
which is solved numerically using an adaptive Runge–Kutta error-control scheme as described in [2]. This sec-
ond-order scheme allows sub-CFL time steps at grid cells where the reaction is active, and delivers an estimate
for the truncation error si which is used in (6). We use this estimate to tag cells for refinement which, in turn,
results in a reduced CFL time step, Dt, so that generally at most 2 or 3 sub-CFL steps are taken for any grid
cell.

The hydrodynamic step in (13), U�i ¼ Sf ðDtÞeUi say, involves the convective terms in (11). This step is per-
formed using the conservative scheme
U�i ¼ eUi �
Dt

J iDr1

ðbF1;i1þ1=2;i2;i3 � bF1;i1�1=2;i2;i3Þ

� Dt
J iDr2

ðbF2;i1;i2þ1=2;i3 � bF2;i1;i2�1=2;i3Þ �
Dt

J iDr3

ðbF3;i1;i2;i3þ1=2 � bF3;i1;i2;i3�1=2Þ:
ð16Þ
The numerical flux functions in (16) are calculated using a second-order, slope-limited, Godunov method with
an approximate Roe Riemann solver. Full details of the flux calculations are given in [2]. It is worth noting
that for the case of a Cartesian grid, the metrics of the mapping simplify and we exploit this in the various
formulas for the Godunov scheme to reduce computational cost and memory usage.

A global time step Dt is used for all component grids, including refinement grids, and is determined by
Dt ¼ rCFL min
16g6N grid

Dtg; ð17Þ
where rCFL is a constant taken to be 0.8 in our calculations and Dtg is the time step suitable for grid g. This
time step is determined from an analysis of the real and imaginary parts of the time-stepping eigenvalue (see
[2]). For the Euler equations the dominant term comes from the imaginary part of the eigenvalue so that Dtg is
essentially governed by a CFL stability constraint for the numerical solution on grid g.

6. Numerical results

We now present numerical results for various initial-boundary-value problems (IBVPs) of the type given
in (1). We begin in Section 6.1 by performing tests that carefully check the correctness of the different com-
ponents of the parallel AMR overlapping grid algorithm. These components do not depend on the partic-
ular equations being solved and thus can be checked more readily by solving the advection–diffusion
equations in (2) rather than the more complicated Euler equations. We construct exact solutions for a num-
ber of test problems by the method of analytic solutions. We then check the accuracy of the numerical
solutions for these test problems for various choices of grids, refinement parameters, and number of
processors.

Once the accuracy of the numerical approach is established for the equations in (2), we then consider
results for the more difficult reactive Euler equations in (3). In Section 6.2, we consider a non-reactive prob-
lem involving planar shock diffraction by a rigid sphere in a rectangular channel. For this problem, we com-
pute the solution for a sequence of overlapping grids with increasing grid resolution to verify convergence.
Since the problem is axisymmetric in the neighborhood of the sphere, we also check the accuracy of the solu-
tion by comparing the results of fully three-dimensional calculations with corresponding results given by a
highly resolved axisymmetric calculation. It is also of interest to examine the parallel scalability of the numer-
ical implementation, and this is done for the shock-diffraction problem. Finally, in Section 6.3, we illustrate
the numerical approach for a complex reactive flow problem involving detonation initiation in a T-shaped
pipe.

7484 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
6.1. Test problems for an advection–diffusion equation

We first consider our numerical approach for various test problems involving the advection–diffusion equa-
tion in (2). For these problems, we construct exact solutions of the equation using the method of analytic solu-
tions so that we may later check our numerical solutions with these exact solutions. For example, consider the
IBVP given in (2) and a choice for a smooth function �uðx; tÞ. For a chosen domain X, the function �uðx; tÞ is an
exact solution of the IBVP if we set
f ðx; tÞ ¼ �ut þ a � r�u� mD�u; u0ðxÞ ¼ �uðx; 0Þ; for x 2 X;
and
gðx; tÞ ¼ �uðx; tÞ; for x 2 oX:
In our numerical implementation, we have a number of choices available for �u, including polynomials, trig-
onometric functions, and exponential functions, among others. For the purposes of this paper, we consider
two choices. The first choice is a polynomial of degree 2 in space and degree 1 in time given by
�uðx; tÞ ¼
X2

i¼0

X2

j¼0

X2

k¼0

X1

l¼0

bi;j;k;lxiyjzktl; ð18Þ
where bijkl are the coefficients of the polynomial and x ¼ ðx; y; zÞ. The second choice is a translating pulse given by
�uðx; tÞ ¼ c0 expf�ðjx� xcðtÞj=c1Þ2g; ð19Þ

where c0 and c1 are parameters, and xcðtÞ ¼ x0 þ v0t gives the position of the center of the pulse at a time t.
Here, x0 is the position of the center of the pulse at t ¼ 0 and v0 is its constant velocity.

We note that the spatial discretization of the advection–diffusion equation is exact (to within round-off
error) on Cartesian grids (or rotated Cartesian grids) for the case when �uðx; tÞ is given by the polynomial
in (18). The Runge–Kutta time-stepping algorithm, either second or fourth order, is exact for polynomials
of degree 1 in time at most. This is due to the fact that the boundary conditions on the intermediate Runge–
Kutta stages are given by �uðx; tÞ exactly, but the numerical intermediate stage solutions may be only
first-order accurate [48]. While it is very useful to consider a test function whose numerical solution should
be exact for Cartesian grids, the polynomial does not give an interesting distribution of refinement grids for
the purpose of testing the AMR implementation. We address this issue by considering an auxiliary function
given by
Hðx; tÞ ¼
1 if jx� xcðtÞj 6 1;

0 if jx� xcðtÞj > 1;

�

where xcðtÞ has the same form as that used in (19), and use this sharp hat function only for the error estimate
in (6) and (7) to generate the refinement grids, instead of using the smooth polynomial. We refer to this com-
bined test function as the poly-hat solution. Finally, we note that the discretization error for the translating
pulse solution in (19) is not zero, but should converge with second-order accuracy.

We now consider a series of numerical tests for the advection–diffusion equation in (2) with a ¼ ð1; 1; 1Þ and
m ¼ 0:01, and for two choices for the domain X represented by two basic overlapping grids. All of the numer-
ical calculations for these tests are performed in parallel using the modified bin-packing load balancer as
described in Section 4.5.

6.1.1. Tests using a box-in-a-box grid

For the first series of calculations, we introduce a box grid B defined by
Bð½xa; xb� � ½ya; yb� � ½za; zb�;N 1;N 2;N 3Þ ¼ fðxa þ i1Dx; ya þ i2Dy; za þ i3DzÞj
Dx ¼ ðxb � xaÞ=N 1;Dy ¼ ðyb � yaÞ=N 2;Dz ¼ ðzb � zaÞ=N 3; ia ¼ 0; 1; . . . ;N a; a ¼ 1; 2; 3g:

ð20Þ
We also consider a rotated-box grid, Rð½xa; xb� � ½ya; yb� � ½za; zb�;N 1;N 2;N 3; hx; hy ; hzÞ, which is obtained from
B by rotating it through an angle hx about the x-axis, followed by a rotation through an angle hy about the

y-axis, and finally by a rotation through an angle hz about the z-axis. We now consider an overlapping grid,
G
ðj;‘Þ
b , for a domain X given by x 2 ½�1; 1�3, where the integer j P 1 determines the mesh spacing on the base

level and ‘ gives the maximum number of refinement levels allowed (with ‘ ¼ 0 being the base level). For ‘ ¼ 0,
this overlapping grid consists of a rotated-box grid embedded in a box grid and is defined by
G
ðj;0Þ
b ¼ Bð½�1; 1�3; 20j; 20j; 20jÞ [Rð½�0:4; 0:4�3; 8j; 8j; 8j; p=4; p=4; p=4Þ: ð21Þ

Table 2
Parallel AMR results for a variety of runs involving the box-in-a-box overlapping grid with the moving pulse solution

Grid nr Nproc N step N regrid N grid N point Ej;‘

G
ð2;1Þ
b 4 8 245 31 (2, 37) 2.2e+6 3.22e�3

G
ð2;2Þ
b 2 2 245 63 (9, 100) 2.1e+6 3.22e�3

G
ð2;2Þ
b 2 4 245 63 (9, 100) 2.1e+6 3.22e�3

G
ð4;1Þ
b 2 8 245 62 (2, 129) 2.3e+6 3.21e�3

G
ð8;0Þ
b – 16 245 – (2, 2) 4.8e+6 3.21e�3

The effective resolution is the same for each run and the numerical errors, Ej;‘, are found to be approximately equal.

7486 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
run, the numerical errors given by Ej;‘ should be approximately equal. The maximum errors shown in the table
verify this expectation.

6.1.2. Tests using a sphere-in-a-box grid

The sphere-in-a-box grid is an overlapping grid for the region exterior to a sphere of radius 1
2

and inside the
cube ½�2; 2�3. For this grid, we use a box grid to describe the boundary of the cube as well as the bulk of the
interior of the region, and then consider various curvilinear boundary-fitted grids to describe the boundary of
the sphere. For the latter, a simple choice would be a single boundary-fitted grid based on a mapping using
spherical-polar coordinates, i.e.
Sð½qa; qb� � ½ha; hb� � ½/a;/b�;N 1;N 2;N 3Þ ¼ fðqi1 cos hi2 sin /i3 ; qi1 sin hi2 sin /i3 ; qi1 cos /i3Þj
qi1 ¼ qa þ i1ðqb � qaÞ=N 1; hi2 ¼ ha þ i2ðhb � haÞ=N 2;/i3 ¼ /a þ i3ð/b � /aÞ=N 3;

ia ¼ 0; 1; . . . ;N a; a ¼ 1; 2; 3g
ð22Þ
with limits taken as qb > qa ¼ 1
2
; ha ¼ 0; hb ¼ 2p;/a ¼ 0 and /b ¼ p. The difficulty with this simple choice is

that it has coordinate singularities at / ¼ 0 (north pole) and / ¼ p (south pole). To avoid these singularities,
we employ boundary-fitted grids, one centered about each pole, based on orthographic projections of rectan-
gular grid patches onto the sphere. These grids may be defined by first introducing an orthographic transform,
Op, given by
x ¼ Opðr; ½qa; qb�; ŝ2; ŝ3Þ � p
ð1� r2Þq

1þ r2
;

2qs2

1þ r2
; p

2qs3

1þ r2

� �
;

where q; s2; s3 and r are given in terms of r ¼ ðr1; r2; r3Þ 2 ½0; 1�3 by
q ¼ qa þ r1ðqb � qaÞ; s2 ¼ r2 �
1

2

� �
ŝ2; s3 ¼ r3 �

1

2

� �
ŝ3; r2 ¼ s2

2 þ s2
3

and p ¼ þ1 for the transformation near the north pole and p ¼ �1 for the transformation near the south pole.
The parameters ½qa; qb� specify the radial extent of the region, while ŝ2 and ŝ3 determine its lateral extent. The
orthographic grid, Op centered about pole p, is now defined as
Opð½qa; qb�; ŝ2; ŝ3;N 1;N 2;N 3Þ ¼ fxijxi ¼ Opðri; ½qa; qb�; ŝ2; ŝ3Þ; ia ¼ 0; 1; . . . ;N a; a ¼ 1; 2; 3g: ð23Þ

Using the boundary-fitted grids defined in (22) and (23), we may represent a spherical shell for 0:5 6 q 6 1

as shown in Fig. 6. Two methods of construction are shown in the figure. On the left, we use a spherical-polar
grid given by (22) for the region near the equator (/ ¼ p=2) and two orthographic grids given by (23) with
p ¼ 	1 for the regions near the poles. We note that the grid points on the spherical-polar grid near the sin-
gularities at the poles are removed by the orthographic grids in this overlapping-grid construction. If the
extent of the two orthographic grids is increased, it is possible to represent the entire spherical shell without
the spherical-polar grid as shown on the right in the figure. An advantage of this latter approach is that one
less component grid is used for the overlapping grid, while a disadvantage is that the distortion of the grid cells
near the equator is larger. The construction on the left is the basis for the overlapping grid used in the next
section for the problem of shock diffraction by a sphere. For the present tests, we use the construction on the
right, and define the sphere-in-a-box grid on the base level ‘ ¼ 0 as

Table
Paralle

Grid

Gð1;1Þs

Gð2;1Þs

Gð3;1Þs

The m
demon

Fig. 6. Sample overlapping-grid constructions for a spherical shell. Left: an overlapping grid consisting of Sð½0:5; 1� � ½0; 2p��
½0:15p; 0:85p�; 5; 64; 22Þ and O	1ð½0:5; 1�; 0:6; 0:6; 5; 16; 16Þ. Right: an overlapping grid consisting of O	1ð½0:5; 1�; 2:1; 2:1; 5; 31; 31Þ.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7487
Gðj;0Þs ¼ Bð½�2; 2�3; 40j; 40j; 40jÞ [O	1ð½0:5; 0:9�; 2:1; 2:1; 4j;NðjÞ;NðjÞÞ;

where NðjÞ ¼ b22:4jþ 0:5c. As before, the integer j specifies the grid resolution on the base level. The sphere-
in-a-box grid includes two non-trivial curvilinear component grids and therefore provides an additional level
of complexity to test the numerical implementation.

Table 3 presents results for a pulse function moving in a domain X represented by a sequence of sphere-in-
a-box grids with increasing grid resolution. The pulse function is given by (19) with c0 ¼ 1; c1 ¼ 0:2; x0 ¼
ð�0:5;�1:25;�0:5Þ and v0 ¼ ð1; 1; 1Þ. For each case, one level of refinement grids is used with nr ¼ 2, and
the equations are integrated to t ¼ 0:25 using a fourth-order Runge–Kutta time-stepper, RK4. (Nearly iden-
tical results are obtained using RK2.) The problem is solved using sphere-in-a-box grids, Gðj;1Þs ; j ¼ 1; 2 and 3,
with representative mesh spacings on the finest level given by hj;1 ¼ 1=ð20jÞ. Thus, the effective resolution
increases with j, and our aim in this test is to check whether the numerical solution converges at the correct
rate which should be second-order for our spatial discretization. For each j, we compute the maximum error at
t ¼ 0:25, and then perform a least squares fit to the formula Ej;1 ¼ Cðhj;1Þl, where C is a constant and l is the
rate of convergence. For the errors reported in the table, we find that l ¼ 2:0 which shows that the approx-
imation is second-order accurate.

As a final test, we compute numerical solutions to the advection–diffusion equation using the sphere-in-a-
box grid for a range of values for ðj; ‘Þ and nr such that the effective resolution is held fixed. The exact solution
is given by the pulse function with the same choice of parameters used for the previous test case. For each run,
we compute the numerical error, Ej;‘, and display the results in Table 4. Numerical solutions are computed for
a range of values for N proc, and, as expected, the maximum errors in the computed solution are approximately
equal in all cases.

6.2. Shock diffraction by a sphere

Having established the accuracy of the numerical implementation for the advection–diffusion equation, we
now consider more complex problems involving the reactive Euler equations. For a first problem, we consider
3
l AMR results for runs involving the sphere-in-a-box grid with the moving pulse solution

nr Nproc N step N regrid N grid N point Ej;1

2 32 48 24 (3, 23) 2.0e+5 2.84e�2

2 32 120 60 (3, 49) 1.1e+6 6.91e�3

2 32 376 188 (3, 128) 6.7e+6 1.70e�3

esh spacing on the finest level decreases by a factor of 2 while the maximum error, Ej;‘, decreases by a factor of approximately 4 thus
strating second-order accuracy.

Table 4
Parallel AMR results for runs involving the sphere-in-a-box grid with the moving pulse solution

Grid nr Nproc N step N regrid N grid N point Ej;‘

Gð1;2Þs 2 8 126 64 (13, 53) 6.0e+5 7.25e�3

Gð1;2Þs 2 32 126 64 (13, 53) 6.0e+5 7.25e�3

Gð1;1Þs 4 16 187 47 (3, 21) 6.6e+5 7.25e�3

Gð1;1Þs 4 32 187 47 (3, 21) 6.6e+5 7.25e�3

Gð2;1Þs 2 1 120 60 (3, 49) 1.1e+6 6.91e�3

Gð2;1Þs 2 32 120 60 (3, 49) 1.1e+6 6.91e�3

Gð4;0Þs – 8 166 – (3, 3) 4.9e+6 6.76e�3
Gð4;0Þs – 32 166 – (3, 3) 4.9e+6 6.76e�3

The effective resolution is the same for all runs and we observe that the numerical errors, Ej;‘, are approximately equal.

7488 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
planar shock diffraction by a solid sphere. We assume that the state of the non-reactive flow ahead of the
shock, initially at x1 ¼ �1:5, is at rest with ambient density, pressure and sound speed given by
q0 ¼ 1; p0 ¼ 0:7143; a0 ¼ 1;
respectively, assuming an ideal gas with c ¼ 1:4. The state of the flow behind the shock is given by
q ¼ 2:667; v1 ¼ 1:25; v2 ¼ v3 ¼ 0; p ¼ 3:214; a ¼ 1:299;
so that the Mach number of the shock is M0 ¼ U=a0 ¼ 2, where U is the velocity of the shock. The radius of
the sphere is taken to be 1 and its center is at the origin, x1 ¼ x2 ¼ x3 ¼ 0. The flow is considered in a channel
with a square cross section for jx2j 6 2:5 and jx3j 6 2:5, but for numerical convenience we compute the flow in
the portion of the channel with x2 P 0 and x3 P 0, and use symmetry boundary conditions on the planes
x2 ¼ 0 and x3 ¼ 0. Slip-wall boundary conditions are used on the walls of the channel and on the surface
of the sphere.

The base grid for the full channel with cross section jx2; x3j 6 2:5 is similar to the sphere-in-a-box grid used
in the previous section, but the sphere is represented by a spherical-polar grid near the equator at x1 ¼ 0 and
two orthographic grids at the poles as in the overlapping-grid construction on the left in Fig. 6. This full-channel
grid covering the rectangular channel for �2:5 6 x1 6 2:5 is defined as
Gðj;0Þc ¼ Bð½�2:5; 2:5�3; 50j; 50j; 50jÞ [Sð½1; 1þ 6hj;0� � ½0; 2p� � ½0:15p; 0:85p�; 6;N hðjÞ;N/ðjÞÞ
[O	1ð½1; 1þ 6hj;0�; 0:6; 0:6; 6;N 0ðjÞ;N 0ðjÞÞ;
where hj;0 ¼ 1=ð10jÞ;N hðjÞ ¼ b20pjþ 0:5c;N/ðjÞ ¼ b7pjþ 0:5c and N 0ðjÞ ¼ b4pjþ 0:5c. As mentioned ear-
lier, all calculations are performed on a quarter of this grid in the region �2:5 6 x1 6 2:5 and
0 6 x2; x3 6 2:5. This quarter-sphere grid, which we denote by Gðj;‘Þq , where ‘ specifies the number of refinement
levels used, is shown in Fig. 7 for the case j ¼ 1 and ‘ ¼ 0.

6.2.1. Solution behavior and accuracy

As a fine-grid calculation, we compute the flow in the channel using the overlapping grid Gð4;2Þq with nr ¼ 2
for times t ¼ 0 to 1.8. At t ¼ 0 there are 4 grids at the base level and 2 refinement grids covering the initial
planar shock. Later in the calculation as many as 1827 refinement grids are used with a maximum of 55 million
grid points. The calculation is performed in parallel using 32 processors. The bin-packing algorithm described
in Section 4.5 is used to balance the workload. For this algorithm the maximum imbalance defined in (9) sat-
isfies I 6 I T , where the target imbalance is taken to be I T ¼ 0:1. The average and maximum values for I
recorded during the calculation are found to be 0.005 and 0.099, respectively. These values are representative
of all parallel calculations in this paper.

Fig. 8 shows shaded contours of density on the symmetry planes x2 ¼ 0 and x3 ¼ 0 for the flow at
t ¼ 0:6; 1:0; 1:4 and 1.8. The initial impact of the shock at the nose of the sphere generates a reflected shock
which travels back into the flow entrained by the incident shock. The reflection at the surface of the sphere is
regular at first, but then transitions to Mach reflection as the shock travels around the spherical surface. By

Fig. 8. Shaded contours of density for the quarter-sphere problem at t ¼ 0:6 (top left), 1.0 (top right), 1.4 (bottom left) and 1.8 (bottom
right) using Gð4;2Þq with a refinement ratio nr ¼ 2.

Fig. 7. Overlapping grid Gð1;0Þq for the quarter-sphere problem. The Cartesian grid is blue, the spherical-polar grid is green, and the
orthographic grids are red and magenta. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7489
t ¼ 0:6 (top-left view in the figure), the transition to Mach reflection has just occurred, and a Mach stem-like
shock and associated triple-point is shown clearly in the two symmetry planes. As the incident shock continues
down the channel, the reflected shock and Mach stem continue to grow. A region of high density forms near

7490 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
the nose of the sphere due to the reflection there, and a region of low density forms near the back of sphere (see
the lower-left plot at t ¼ 1:4) due to the diffraction of the Mach stem. By t ¼ 1:8 (bottom-right view) the Mach
stem has traveled around the sphere and has converged near the back creating a very high density region. The
reflected shock created by the initial impact has grown and has reflected off the channel walls at x2 ¼ 2:5 and
x3 ¼ 2:5. The four shaded contour plots show the expected symmetry of the solution even though no such sym-
metry is assumed in this fully three-dimensional treatment of the equations.

As mentioned previously, the flow is computed using the overlapping grid Gð4;2Þq with nr ¼ 2 so that up to
two refinement-grid levels are used. Fig. 9 provides representative views of the refinement-grid structure at
t ¼ 0:6 and t ¼ 1:4. The plot on the left shows the grid structure at t ¼ 0:6. Here, we note that the incident
shock and the shock reflected from the sphere are represented by grids at the highest refinement level. There
is a small planar disturbance in the flow (in the v1 � a characteristic field behind the incident shock) created by
the discontinuous initial state, and this has triggered refinement at the first refinement-grid level that appears
during early times of the calculation. At t ¼ 1:4 (right plot), the reflected shock has propagated well away from
the sphere, and the diffracted Mach stem is well developed. Both of these features, as well as the remains of the
incident shock, are represented by grids at the highest refinement level. There is also a contact surface behind
the Mach stem that emerges from the junction of the incident shock, reflected shock, and Mach stem, and this
feature seen in the plot at t ¼ 1:4 is represented by grids at the highest refinement level. The plots in Fig. 9
indicate an effective use of AMR to compute the flow.

As a qualitative measure of the accuracy of the numerical solution, we plot the solution at t ¼ 1:4 computed
using overlapping grids with increasing resolution at the finest level. The top two solutions in Fig. 10 are com-
puted using Gð2;‘Þq ; ‘ ¼ 0 and 1 (with nr ¼ 2 for ‘ ¼ 1) so that the effective mesh spacings are 1/20 and 1/40,
respectively. The bottom two solutions in the figure are computed using Gð4;‘Þq ; ‘ ¼ 1 and 2 (both with nr ¼ 2)
so that the effective mesh spacings for these two solutions are 1/80 and 1/160, respectively. The qualitative
behavior of the solution agrees in all four plots, but fine scale features of the solution, such as contacts and
shocks, become more sharply resolved with increasing grid resolution. Of particular note is the contact that
appears in the flow behind the Mach stem. There is a hint of this contact in the solution on the coarsest grid,
Gð2;0Þq , but it is not as clearly evident until the solution on the finest grid, Gð4;2Þq . Upon further refinement of the
grids, additional fine-scale features of the solution, such as a roll up of the contact, can be expected to appear.

As a quantitative measure of the error in the solutions we compute the self-convergence of the solutions using
a discrete Lp-norm. We first define the volume-normalized discrete Lp-norm of an overlapping-grid function U i as
Fig. 9
refinem
kU ikp ¼
P

ijU ijp dViP
i dVi

� �1=p

; dVi ¼
ox

or

���� ����
i

dr1 dr2 dr3: ð24Þ
Here, the sums are taken over all discretization points (excluding points hidden by refinement) on all compo-
nent grids of an overlapping grid G, and dVi is an approximation for the size of the local volume element at
. Shaded contours of density for the quarter-sphere problem at t ¼ 0:6 (left) and t ¼ 1:4 (right) along with the corresponding
ent grid structure. (The grid is coarsened by a factor of 4 for illustrative purposes.)

Fig. 10. Shaded contours of density at t ¼ 1:4 using overlapping grids Gð2;0Þq (h ¼ 1=20, top left), Gð2;1Þq (h ¼ 1=40, top right), Gð4;1Þq

(h ¼ 1=80, bottom left), and Gð4;2Þq (h ¼ 1=160, bottom right).

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7491
grid point xi. We divide by the sum of the volume elements in (24) so that the norm is scaled by the size of the
domain. We may now compute the self-convergence rate with respect to the Lp-norm for a set of runs on over-
lapping grids with increasing resolution. Let U m

i , m ¼ 1; 2; . . ., be solutions on overlapping grids Gm with rep-
resentative grid spacing hm. We assume to leading order that
Um
i � uðxm

i ; tÞ � Cm
i hl

m;
where uðx; tÞ is the exact solution at a fixed time t; l is the convergence rate, and Cm
i is a grid function whose

values are independent of hm and l. Subtracting solutions of different resolutions m and n with n > m gives
Um
i �Rm

n Un
i � Cm

i ðhl
m � hl

nÞ; ð25Þ

where Rm

n is an operator that restricts a grid function from the finer overlapping grid Gn to the coarser grid Gm.
For the case when mesh points do not coincide, linear interpolation is used in the restriction operation. In (25)
we have assumed that any interpolation errors introduced by this restriction can be neglected. The discrete
Lp-norm of (25) satisfies
kUm
i �Rm

n Un
i kp � Cjhl

m � hl
n j; ð26Þ
where C is a positive constant independent of the grid. Given solutions at three increasing resolutions,
U m

i ;m ¼ 1; 2; 3, and the computed differences on the left hand side of (26) using ðm; nÞ ¼ ð1; 2Þ and (1, 3),
we can estimate C and the convergence rate l. An estimate for the error in U m

i is then given by Em
p ¼ Chl

m with
respect to the discrete Lp-norm.

Table 5 shows estimated errors in the density and the corresponding convergence rates from numerical
solutions at times t ¼ 1:0 and t ¼ 1:8. The errors and rates are computed with respect to the discrete L1

and L2-norms as described above using numerical solutions on the three overlapping grids Gð2;1Þq (m ¼ 1),
Gð4;1Þq (m ¼ 2) and Gð4;2Þq (m ¼ 3). We note that the computed convergence rates at both times are somewhat
greater than the expected asymptotic values of 1 for the L1-norm and 1=2 for the L2-norm. This may be

Table 5
Estimated L1 and L2 errors in the density, Em

1 and Em
2 , respectively, and convergence rates l at t ¼ 1:0 and t ¼ 1:8

Grid hm t ¼ 1:0 t ¼ 1:8

Em
1 Em

2 Em
1 Em

2

Gð2;1Þq 1/40 1.5e�2 8.9e�2 2.3e�2 9.7e�2

Gð4;1Þq 1/80 6.1e�3 4.6e�2 1.1e�2 5.3e�2

Gð4;2Þq 1/160 2.5e�3 2.4e�2 5.4e�3 2.9e�2

Rate, l 1.30 0.95 1.06 0.86

7492 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
attributed to the fact that at these grid resolutions the overall error is not entirely dominated by the error asso-
ciated with discontinuities in the flow (shocks and contacts), especially for the earlier time t ¼ 1:0.

A further illustration of grid convergence is shown in Fig. 11. In this plot, we show the behavior of the den-
sity on the surface of the sphere in the plane x3 ¼ 0 at times t ¼ 0:3; 0:5; . . . ; 1:3 from the numerical solution
using overlapping grids Gð2;1Þq ;Gð4;1Þq and Gð4;2Þq , all with nr ¼ 2. The effective mesh spacings for these grids are
1/40, 1/80 and 1/160, respectively, as noted before. These solutions are compared with a highly-resolved axi-
symmetric solution on a two-dimensional overlapping grid with effective mesh spacing equal to 1=320. The
convergence of the density to the axisymmetric solution is seen clearly. In addition, it is found that there is
a negligible difference in the computed density between that shown in the plane x3 ¼ 0 and other cut planes
through the axis of symmetry for Gð4;2Þq .

6.2.2. Parallel performance

The problem of shock diffraction by a sphere provides a good test problem to assess the scalability of the
parallel numerical method. We first consider numerical solutions for the case when ‘ ¼ 0, i.e. no AMR. For
each run, we integrate the equations from t ¼ 0 to 1:8, as before, and record the number of time steps taken
and the total CPU time used (wall clock time). From this information we compute T k, the average CPU time
per step for run k. Ideally, T k would be proportional to the number of active points per processor (assuming a
perfectly balanced workload and no communication costs), so that the scaled CPU time per step given by
Fig. 11
Gð4;1Þq (
using a
reader
T �k ¼
T k

N
ðkÞ
point=N ðkÞproc
. Behavior of density along the surface of the sphere at t ¼ 0:3; 0:5; . . . ; 1:3 using overlapping grids Gð2;1Þq (h ¼ 1=40, blue curves),
h ¼ 1=80, green curve), and Gð4;2Þq (h ¼ 1=160, red curves), all with nr ¼ 2. The black curves are given by an axisymmetric calculation

overlapping grid with effective mesh spacing equal to 1/320. (For interpretation of the references to colour in this figure legend, the
is referred to the web version of this article.)

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7493
would be the same for each run. Here, N
ðkÞ
point is number of active points on the overlapping grid and N ðkÞproc is

the number of processors used, both for run k. Generally, the scaled CPU time per step does not behave ide-
ally, and increases as the size of the problem grows due primarily to an increased cost associated with com-
munication between processors. To measure this behavior, we define a parallel scale factor
Table
Strong

k

0

1

2

3

4

5

6

The C

Table
Breakd
N ðkÞproc ¼

Compu
Interpo
Bound
Updat
(Other

Total

The tim
require
Sk ¼
T �0
T �k

;

which compares the scaled CPU times per step between runs 0 and k. For each set of runs, k ¼ 0 is taken to be
a reference computation with N ð0Þproc ¼ 1. All calculations in this section, and in Section 6.3, are performed on a
26-node Linux cluster with 4 CPU cores and 6 gigabytes of main memory per node, and with a Myrinet com-
munication system.

For our first experiment, we consider the CPU times required to compute the solution on the overlapping
grid Gð4;0Þq with N ðkÞproc ¼ 2k for k ¼ 0; 1; . . . ; 6. Table 6 presents the strong scaling results of this experiment in
which the number of active grid points is held fixed as the number of processors increase. The number of time
steps taken, N ðkÞstep, is fixed for each k and the CPU time per step, T k, is given in seconds. The behavior of the scale
factor, Sk, shows the expected result. As the number of processors increase, Sk decreases. However, the decrease
is not very large so that the code scales reasonably well with no AMR. The main reason for the decrease in the
scale factors is the cost for communication. This may be seen in the breakdown of the timings for specific parts
of the time-stepping algorithm listed in Table 7. As N ðkÞproc increases and thus the number of grid points per pro-
cessor decreases, the percentage of time spent computing Dun

i;j in the Godunov step decreases while the percent-
age of time spent for interpolation and updating the parallel ghost boundaries, both requiring communication,
increases. All of the calculations use the modified bin-packing algorithm for load balancing.

For the next experiment, we consider the weak scaling behavior for the calculation of shock diffraction by a
sphere with no AMR. This is done by recording the CPU times per step for calculations on overlapping grids
6
scaling results for the calculation of shock diffraction by a sphere with no AMR

Grid N
ðkÞ
point N ðkÞproc N

ðkÞ
point=N ðkÞproc N ðkÞstep T k Sk

Gð4;0Þq 2.01e+6 1 2.01e+6 617 15.2 1.00

Gð4;0Þq 2.01e+6 2 1.00e+6 617 7.77 0.98

Gð4;0Þq 2.01e+6 4 5.02e+5 617 3.96 0.96

Gð4;0Þq 2.01e+6 8 2.51e+5 617 2.09 0.91

Gð4;0Þq 2.01e+6 16 1.26e+5 617 1.09 0.87

Gð4;0Þq 2.01e+6 32 6.27e+4 617 0.587 0.81

Gð4;0Þq 2.01e+6 64 3.14e+4 617 0.341 0.70

PU time in seconds per step is given by T k . The parallel scaling factor Sk should be 1 for perfect parallel scaling.

7
own of the CPU time per step (in seconds) for various parts of the calculation of shock diffraction by a sphere with no AMR using
1, 4, 16 and 64

N ðkÞproc ¼ 1 N ðkÞproc ¼ 4 N ðkÞproc ¼ 16 N ðkÞproc ¼ 64

T k % T k % T k % T k %

te DUn
i;j 14.0 92.0 3.38 85.4 0.833 76.4 0.216 63.3

lation 0.0152 0.1 0.0396 1.0 0.0491 4.5 0.0351 10.3
ary conditions 0.684 4.5 0.182 4.6 0.0534 4.9 0.0201 5.9
e ghost boundaries 0.0 0.0 0.218 5.5 0.112 10.3 0.0501 14.7
) 0.517 3.4 0.139 3.5 0.0425 3.9 0.0198 5.8

15.2 100.0 3.96 100.0 1.09 100.0 0.341 100.0

e spent in ‘‘interpolation” and ‘‘update ghost boundaries” increases as the number of processors increases since these functions
parallel communication.

7494 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
Gðj;0Þq with j ¼ 1; 2; 3 and 4. For each run k, the number of processors is chosen so that the number of active
grid points per processor given by N

ðkÞ
point=N ðkÞproc is fixed (approximately). If the cost of communication is

approximately proportional to the number of points per processor, then the CPU time per step for each k

should be similar and the scale factors should be approximately 1. The results of this experiment are given
in Table 8 where we observe that the scaling factors, Sk, are in fact close to 1 for all k. We note that the scaling
results are good even though the number of grid points per processor, about 3:5� 104, is not very large.

For our final experiment, we consider the parallel performance for a set of calculations using AMR. For
this study, we consider the CPU times for calculations using the overlapping grid Gð2;1Þq which employs one
level of refinement grids. The refinement factor, nr, is taken to be 2 for the AMR calculations in this study,
and nregrid is taken to be 8. Table 9 presents strong scaling results in which N ðkÞproc ¼ 2k; k ¼ 0; 1; . . . ; 5 while
the average number of active grid points given by N

ðkÞ
point is held fixed. The average CPU time (in seconds)

per time step and the resulting scale factors given by Sk are listed in the table for each k. Here it is found that
the scale factors decrease faster as the number of processors increase as compared to that for calculations
without AMR. This is due primarily to the communication needed for the AMR interpolation. As mentioned
earlier, our initial focus in the extension of our implementation of AMR on overlapping grids has been accu-
racy of the numerical method. We recognize that the parallel implementation of AMR interpolation could be
more efficient (see Section 4.3.2), and the scaling results in Table 9 verify this. Future developments of the
AMR implementation will focus on improved efficiency of the parallel AMR interpolation algorithm.

6.3. Detonation initiation in a T-shaped pipe

As a final illustration of our numerical approach, we consider a reactive flow problem involving the initi-
ation of a detonation in a domain consisting of two cylinders that intersect to form a T-shaped pipe. The
geometry of the pipe is shown in Fig. 12. The main section of the pipe is a cylinder with radius equal to 1
and axis of symmetry given by the x1-axis. At the base level, it is represented by the union of a box grid defined
previously in (20) and a boundary-fitted cylindrical grid. The latter grid is defined by
Table
Weak

k

0

1

2

3

The tim

Table
Strong

k

0

1

2

3

4

5

Cð½xa; xb� � ½ra; rb� � ½ha; hb�;N 1;N 2;N 3Þ ¼ fðx; r cos h; r sin hÞj
x ¼ xa þ i1ðxb � xaÞ=N 1; r ¼ ra þ i2ðrb � raÞ=N 2; h ¼ ha þ i3ðhb � haÞ=N 3;

ia ¼ 0; 1; . . . ;N a; a ¼ 1; 2; 3g:
ð27Þ
8
scaling results for the calculation of shock diffraction by a sphere with no AMR

Grid N
ðkÞ
point N ðkÞproc N

ðkÞ
point=N ðkÞproc N ðkÞstep T k Sk

Gð1;0Þq 3.50e+4 1 3.50e+4 170 0.346 1.00

Gð2;0Þq 2.61e+5 8 3.26e+4 330 0.373 0.92

Gð3;0Þq 8.58e+5 24 3.57e+4 473 0.355 0.99

Gð4;0Þq 2.01e+6 60 3.35e+4 617 0.373 0.89

e per step, T k , and the parallel scaling factor, Sk , are nearly constant indicating good parallel scaling.

9
scaling results for the calculation of shock diffraction by a sphere with AMR

Grid N
ðkÞ
point N ðkÞproc N

ðkÞ
point=N ðkÞproc N ðkÞstep T k Sk

Gð2;1Þq 1.61e+6 1 1.61e+6 645 11.8 1.00

Gð2;1Þq 1.61e+6 2 8.05e+5 645 6.23 0.95

Gð2;1Þq 1.61e+6 4 4.02e+5 645 3.23 0.91

Gð2;1Þq 1.61e+6 8 2.01e+5 645 1.82 0.81

Gð2;1Þq 1.61e+6 16 1.01e+5 645 1.02 0.72

Gð2;1Þq 1.61e+6 32 5.03e+4 645 0.591 0.62

Fig. 12. Overlapping grid for the T-shaped pipe geometry. The Cartesian grids are blue and red, the cylindrical boundary-fitted grids are
green and magenta, and the fillet grid is light blue. (The grid is coarsened by a factor of 6 for illustrative purposes.) (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7495
Thus, for the main section of pipe, we use
Bð½�2; 2� � ½�1; 1� � ½�1; 1�; 240; 120; 120Þ [Cð½�2; 2� � ½1� 6h0; 1� � ½0; 2p�; 240; 6; 358Þ;

where h0 ¼ 1=60 gives a representative mesh spacing for the grid on the base level. The top section of pipe is
also given by a cylinder, but with radius equal to 0.7 and axis of symmetry given by the x2-axis. For this section
of pipe, we use
Bð½0; 2� � ½�0:7; 0:7� � ½�0:7; 0:7�; 120; 84; 48Þ [Cð½0; 2� � ½0:7� 6h0; 0:7� � ½0; 2p�; 120; 6; 245Þ

and then rotate this latter two-grid configuration by 90� about the x3-axis. The last grid used to form the over-
lapping grid shown in Fig. 12 is a fillet grid which smoothly connects the main section of pipe with the top
section. This grid is constructed by first defining a mapping for a three-dimensional surface, Fs : R2 ! R3, that
smoothly transitions from the boundary of one cylinder to the boundary of the other. The fillet volume map-
ping, F : R3 ! R3, is defined by extruding the surface mapping in the normal direction. The fillet volume map-
ping is evaluated on a grid of points, xi ¼ FðriÞ, to define the fillet volume grid with mesh spacing
approximately equal to h0 and 7 grid points in the normal direction.

We assume that the state of the reactive flow in the T-shaped pipe at any time t is determined by its density
q, velocity v, pressure p and the mass fraction of the product of reaction given by the scalar reaction progress
variable Y. The reaction rate needed in the governing equations in (3) and (4) is taken to be a one-step, Arrhe-
nius rate with linear depletion of the form
R ¼ rð1� Y Þ exp
1

�

1

T c
� 1

T

� �� �
; mr ¼ 1; ð28Þ
where r is a pre-exponential frequency factor, � is a reciprocal activation energy, T ¼ p=q is a temperature
(with gas constant normalized to 1) and T c is a cross-over temperature. The contribution to the total energy
in (5) is given by q ¼ YQ, where Q < 0 is the heat release, taken to be negative for an exothermic reaction. The
value for r in this reaction model essentially picks the time scale. Following [2], we choose an induction time
scale given by
r ¼ �

ðc� 1ÞjQj : ð29Þ

7496 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
This choice implies that a spatially uniform sample with T ¼ T c ¼ 1 initially would explode at t ¼ 1 for the
limiting case �! 0. For the problem discussed here, we take � ¼ 0:08 in (28), and use Q ¼ �4 and c ¼ 1:4.

We are interested in solving an initial-boundary-value problem in which the initial state of the flow in the
pipe is at rest with p ¼ 1 and Y ¼ 0, but at a critical stage in which the temperature T is near the cross-over
value T c ¼ 1. Motivated by a reactive flow problem discussed in [2], which built upon the earlier work in [49],
we consider the response of the flow to an initial temperature distribution given by
T ðxÞ ¼ 1� dkx� x0k;

where x0 ¼ ð�2; 1; 0Þ gives the location of a hot spot and d ¼ 0:03 gives the rate of decrease in temperature
away from the hot spot. Since T ¼ T c ¼ 1 at x ¼ x0 and T < T c otherwise, the reaction is strongest near x0

leading to a local explosion there which occurs at a time roughly equal to 1 for the choice of r given in
(29). The main focus of the problem is the initiation of a detonation following the local explosion, and its sub-
sequent propagation throughout the domain whose boundaries are assumed to be rigid slip walls.

The IBVP is solved numerically using the overlapping grid for the T-shaped pipe with one refinement level
using a refinement ratio nr ¼ 4. The calculation requires 4930 time steps to integrate the equations from t ¼ 0
to a final time t ¼ 2:8, and uses 48 processors. The number of component grids, at the base level and refine-
ment level, ranges from a minimum of 5 at t ¼ 0 to a maximum of 682 with an average of 192 grids. The num-
ber of grid points used for the calculation ranged from a minimum of 5.5 million for 0 6 t 6 1:46 (during an
initial induction phase of the evolution) to a maximum of approximately 100 million by t ¼ 2:8 (with an aver-
age of 24 million grid points). If the base grid were refined everywhere to achieve the finest resolution of the
present AMR calculation, then the effective number of grid points would be approximately 350 million.

Fig. 13 shows that behavior of the temperature and reaction progress at a time t ¼ 1:5 just prior to the local
explosion at x ¼ x0 (when Y first becomes 1), which is located in the upper left of the main section of the pipe.
The view on the left shows shaded color contours of T on the surface of the domain and on the symmetry
plane x3 ¼ 0, while the view on the right shows shaded color contours of Y. Here, we note that the reaction
progress has achieved a maximum value Y ¼ 0:67 near x0 and that the temperature there is T ¼ 1:93, a value
significantly greater than T c ¼ 1 indicating a rapid reaction there. Prior to t ¼ 1:46, approximately, the solu-
tion is smooth enough so that no cells are tagged for refinement. For t > 1:46, one level of refinement grids
with nr ¼ 4 is used to locally increase the grid resolution where the reaction rate is strong (as determined
by si in (6)) or where spatial gradients are sharp (as measured by ek;i in (7)).

A further increase in the reaction rate after t ¼ 1:5, and its associated release of heat, creates a state of high
temperature and pressure near the site of the initial hot spot. Acoustic signals from this high-pressure state
travel outward from this site and raise the pressure and temperature in the neighborhood of the hot spot.
The increased temperature there leads to an increased reaction rate which, in turn, leads to the formation
of a wave of reaction (a fast flame) which propagates outward away from x ¼ x0. This wave is seen clearly
in the top frames of Fig. 14 at t ¼ 1:8. In this figure, shaded contours of pressure are shown on the left while
Fig. 13. Temperature (left) and reaction progress (right) at t ¼ 1:5.

Fig. 14. Pressure (left) and reaction progress (right) at t ¼ 1:8 (top), t ¼ 2:0 (middle) and t ¼ 2:2 (bottom).

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7497
the corresponding shaded contours of Y are shown on the right. As the fast flame advances away from x ¼ x0,
acoustic signals ahead of it steepen to form a detonation. The detonation strengthens as it propagates towards
the bottom of the main section of the pipe due to a lateral geometric compression, while it weakens as it turns
the 90� corner into the smaller top section of the pipe (see the plots at t ¼ 2:2 in the figure).

The sequence of plots in Fig. 15 shows the complex wave structure of the solution at three times after the
detonation has reached the bottom of the main section of the pipe. For these times, it is convenient to cut away
the portion of the pipe for x3 > 0 to reveal the behavior of the solution on the symmetry plane x3 ¼ 0. As
before, the behavior of pressure is shown on the left and Y is shown on the right. The top view at t ¼ 2:4 shows
the detonation which is convex forward and propagating from left to right. The detonation is strongest near
the bottom of the main section of the pipe where a regular reflection is observed at its bottom surface. By

Fig. 15. Pressure (left) and reaction progress (right) at t ¼ 2:4 (top), t ¼ 2:6 (middle) and t ¼ 2:8 (bottom).

7498 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
t ¼ 2:6 (middle views), the regular reflection has transitioned to a Mach reflection and small a Mach stem-like
detonation may be seen near the bottom surface. Meanwhile, the detonation in the top section of the pipe has
reflected off the planar surface at the top, generating a reflected shock that is propagating back into the reac-
tion products (at Y ¼ 1). The detonation has also met the back edge of the T-shaped pipe where the top sec-
tion joins to the main section of pipe generating a reflected shock from that collision. The final view at t ¼ 2:8
shows the detonation, almost planar now, approaching the back face of the main section of the pipe, and a
complex system of interacting reflected shocks traveling back and generally downward from the top of the
T-shaped pipe, and forward and generally upward from the bottom portion of the pipe.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7499
As a final set of plots, we show in Fig. 16 the behavior of the pressure at t ¼ 2:8 for a range of grid reso-
lutions. The top left and right plots in the figure show the pressure computed using base grids with h0 ¼ 1=30
and h0 ¼ 1=40, respectively, while the plot on the bottom shows the pressure computed using a base grid with
h0 ¼ 1=60 (as used for the previous plots in Figs. 13–15). All three calculations use one refinement level with
nr ¼ 4. We note that the qualitative behavior of the solutions are similar. The location of the detonation wave
is in good agreement for all three grid resolutions, and the locations of shocks and contacts in the burnt flow
behind the detonation are in good agreement as well. The main difference appears in the fine structure of the
solution near the detonation and shock triple-points, in particular, as the grid is refined. Overall, the plots indi-
cate good grid convergence of the solution, although at later times the detonation front shows evidence of
becoming unstable on the finer grids.

Table 10 shows estimated errors in the density and the corresponding convergence rates at times t ¼ 2:0 and
t ¼ 2:8. These values are determined following the discussion in Section 6.2.1 using numerical solutions on
overlapping grids with base-grid mesh spacings h0 ¼ 1=30 (m ¼ 1), h0 ¼ 1=40 (m ¼ 2) and h0 ¼ 1=60
(m ¼ 3). All three calculations use one refinement level with nr ¼ 4 so that the effective mesh spacings are
hm ¼ 1=120, 1/160 and 1/240 as listed in the table. At the earlier time, t ¼ 2:0, the detonation has not formed
fully and thus the computed rates are reasonable for a second-order scheme. At the later time, t ¼ 2:8, the
computed rates for the L1 and L2-norms suggest convergence, but are higher than the expected asymptotic val-
ues of 1 and 1/2, respectively, for flows with discontinuities (contacts, shocks and detonations). We attribute
this to the relative coarseness of the grids, especially for the grids with h0 ¼ 1=30 and 1/40, so that the esti-
mates are not yet close to the asymptotic values.
Fig. 16. Pressure at t ¼ 2:8 using a base grid with h0 ¼ 1=30 (top left), h0 ¼ 1=40 (top right) and h0 ¼ 1=60 (bottom). All three calculations
use one refinement level with nr ¼ 4.

Table 10
Estimated L1 and L2 errors in the density, Em

1 and Em
2 , respectively, and convergence rates l at t ¼ 2:0 and t ¼ 2:8

hm t ¼ 2:0 t ¼ 2:8

Em
1 Em

2 Em
1 Em

2

1/120 4.0e�3 3.0e�2 3.8e�2 2.6e�1
1/160 2.2e�3 1.6e�2 2.4e�2 1.9e�1
1/240 9.8e�4 7.1e�3 1.2e�2 1.2e�1

Rate, l 2.04 2.07 1.65 1.09

7500 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
7. Conclusions

We have described an approach for the numerical solution of initial-boundary-value problems for PDEs in
complex three-dimensional domains using overlapping grids and adaptive mesh refinement. The technique is
implemented for parallel distributed-memory computers using a domain-decomposition approach. We have
discussed various aspects of the parallel algorithm such as the decomposition of grids and grid functions,
and the operations of interpolation, error estimation, refinement-grid generation and load balancing.

We have considered two particular PDEs, an advection–diffusion equation and the reactive Euler equa-
tions, and have described how these equations are discretized and solved numerically. We have verified the
accuracy of the parallel AMR approach by solving the advection–diffusion equation with forcing functions
chosen so that exact solutions can be constructed a priori. We showed that the error in the numerical solution
is of the order of the machine round-off error when the exact solution of the equations is chosen to be of a
polynomial form and when the grids are rectangular. For more general curvilinear grids we showed that
the errors were second-order accurate. The results were shown to be independent of the number of processors,
and independent of the number of refinement levels and refinement ratios provided the effective resolution on
the finest grids are commensurate.

The approach was further verified by solving the Euler equations for planar shock diffraction by a sphere.
Discrete L1 and L2-norm error estimates, computed from a sequence of solutions with increasing resolution,
showed convergence rates that were reasonably close to the expected asymptotic values. In addition, results
of the fully three-dimensional calculation were shown to agree well with the results of a corresponding
highly-resolved axisymmetric calculation. Parallel scaling results were presented for this problem, and they
showed good strong and weak-scaling for the non-AMR case using up to 64 processors. Strong parallel scaling
results for the AMR case were reasonably good, although the scaling results degraded as the number of pro-
cessors increased. This was expected due to our initial implementation of the AMR interpolation routines. As
future work we will improve the parallel efficiency of these routines by combining the large number of small
messages currently being sent.

As a final illustration of the approach, we simulated the initiation and propagation of a gaseous detonation
in a T-shaped pipe. This parallel AMR computation was run on 48 processors, involved a maximum of
approximately 100 million grid points, and showed the detailed structure of the formation and propagation
of the detonation wave as it moved through the complex three-dimensional pipe geometry. Solutions com-
puted on grids with increasing resolution compared well qualitatively, although at later times and on finer
grids, the detonation front developed more structure as it became unstable. Discrete L1 and L2-norm error esti-
mates of the solution were at least as good as the expected asymptotic convergence rates.

References

[1] G. Chesshire, W. Henshaw, Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys. 90 (1)
(1990) 1–64.

[2] W.D. Henshaw, D.W. Schwendeman, An adaptive numerical scheme for high-speed reactive flow on overlapping grids, J. Comput.
Phys. 191 (2003) 420–447.

[3] W.D. Henshaw, D.W. Schwendeman, Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-
reactive flow, J. Comput. Phys. 216 (2) (2006) 744–779.

W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502 7501
[4] E.A. Volkov, A finite difference method for finite and infinite regions with piecewise smooth boundaries, Doklady 168 (5) (1966) 744–
747.

[5] E.A. Volkov, The method of composite meshes for finite and infinite regions with piecewise smooth boundaries, Proc. Steklov Inst.
Math. 96 (1968) 145–185.

[6] G. Starius, Composite mesh difference methods for elliptic and boundary value problems, Numer. Math. 28 (1977) 243–258.
[7] G. Starius, On composite mesh difference methods for hyperbolic differential equations, Numer. Math. 35 (1980) 241–255.
[8] G. Starius, Constructing orthogonal curvilinear meshes by solving initial value problems, Numer. Math. 28 (1977) 25–48.
[9] B. Kreiss, Construction of a curvilinear grid, SIAM J. Sci. Stat. Comput. 4 (2) (1983) 270–279.

[10] J.L. Steger, J.A. Benek, On the use of composite grid schemes in computational aerodynamics, Comput. Methods Appl. Mech. Eng.
64 (1987) 301–320.

[11] A. Kapila, D. Schwendeman, J. Bdzil, W. Henshaw, A study of detonation diffraction in the ignition-and-growth model, Combust.
Theory Model. 11 (5) (2007) 781–822.

[12] J. Banks, D. Schwendeman, A. Kapila, W. Henshaw, A high-resolution Godunov method for compressible multi-material flow on
overlapping grids, J. Comput. Phys. 223 (2007) 262–297.

[13] J. Banks, D. Schwendeman, A. Kapila, W. Henshaw, A study of detonation propagation and diffraction with compliant confinement,
Combust. Theory Model. (accepted for publication).

[14] J.Y. Tu, L. Fuchs, Calculation of flows using three-dimensional overlapping grids and multigrid methods, Int. J. Numer. Methods
Eng. 38 (1995) 259–282.

[15] P.G. Buning, I.T. Chiu, S. Obayashi, Y.M. Rizk, J.L. Steger, Numerical simulation of the integrated space shuttle vehicle in ascent,
paper 88-4359-CP, AIAA, 1988.

[16] M. Hinatsu, J. Ferziger, Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid
technique, Int. J. Numer. Methods Fluids 13 (1991) 971–997.

[17] R. Meakin, Moving body overset grid methods for complete aircraft tiltrotor simulations, paper 93-3350, AIAA, 1993.
[18] D. Pearce, S. Stanley, F. Martin, R. Gomez, G.L. Beau, P. Buning, W. Chan, T. Chui, A. Wulf, V. Akdag, Development of a large

scale Chimera grid system for the space shuttle launch vehicle, paper 93-0533, AIAA, 1993.
[19] R. Maple, D. Belk, A new approach to domain decomposition, the Beggar code, in: N. Weatherill (Ed.), Numerical Grid Generation

in Computational Fluid Dynamics and Related Fields, Pineridge Press Limited, 1994, pp. 305–314.
[20] D. Jespersen, T. Pulliam, P. Buning, Recent enhancements to OVERFLOW, paper 97-0644, AIAA, 1997.
[21] R.L. Meakin, Composite overset structured grids, in: J.F. Thompson, B.K. Soni, N.P. Weatherill (Eds.), Handbook of Grid

Generation, CRC Press, 1999, pp. 1–20, (Chapter 11).
[22] C. Kiris, D. Kwak, S. Rogers, I. Chang, Computational approach for probing the flow through artificial heart devices, J. Biomech.

Eng. 119 (4) (1997) 452–460.
[23] Y. Tahara, R. Wilson, P. Carrica, F. Stern, RANS simulation of a container ship using a single-phase level-set method with overset

grids and the prognosis for extension to a self-propulsion simulator, J. Marine Sci. Technol. 11 (4) (2006) 209–228.
[24] F. Olsson, J. Ystrnoxöm, Some properties of the upper convected Maxwell model for viscoelastic fluid flow, J. Non-Newtonian Fluid

Mech. 48 (1993) 125–145.
[25] N.A. Petersson, A numerical method to calculate the two-dimensional flow around an underwater obstacle, SIAM J. Numer. Anal. 29

(1992) 20–31.
[26] P. Fast, Dynamics of interfaces in non-Newtonian Hele-Shaw flow, Ph.D. thesis, New York University, Courant Institute of

Mathematical Sciences, 1999.
[27] P. Fast, M.J. Shelley, A moving overset grid method for interface dynamics applied to non-Newtonian Hele-Shaw flow, J. Comput.

Phys. 195 (2004) 117–142.
[28] K. Brislawn, D.L. Brown, G. Chesshire, J. Saltzman, Adaptively-refined overlapping grids for the numerical solution of hyperbolic

systems of conservation laws, Report LA-UR-95-257, Los Alamos National Laboratory, 1995.
[29] E.P. Boden, E.F. Toro, A combined Chimera-AMR technique for computing hyperbolic PDEs, in: Djilali (Ed.), Proceedings of the

Fifth Annual Conference of the CFD Society of Canada, 1997, pp. 5.13–5.18.
[30] C.A. Rendleman, V.E. Beckner, M. Lijewski, W.Y. Crutchfield, J.B. Bell, Parallelization of structured hierarchical adaptive mesh

refinement algorithms, Comput. Visual. Sci. 3 (2000) 147–157.
[31] P. Colella et al., Chombo, software package for AMR applications, Technical Report <http://seesar.lbl.gov/anag/chombo>,

Lawrence Berkely National Laboratory, 2007.
[32] M. Parashar, J.C. Browne, Distributed adaptive grid hierarchy, <http://www.caip.rutgers.edu/~parashar/dagh/>, Rutgers University,

2007.
[33] M. Parashar, GrACE grid adaptive computational engine, <http://www.caip.rutgers.edu/tassl/projects/grace/, Rutgers University

(2007).
[34] K. Olson, Paramesh: a parallel adaptive grid tool, in: A. Deane et al. (Ed.), Parallel Computational Fluid Dynamics, Elsevier, 2006,

pp. 341–348.
[35] X. Garaizar, R. Hornung, S. Kohn, Structured adaptive mesh refinement applications infracture, Technical Report <http://

www.llnl.gov/casc/SAMRAI>, Lawrence Livermore National Laboratory, 1999.
[36] W. Henshaw, Mappings for Overture, a description of the Mapping class and documentation for many useful Mappings, Research

Report UCRL-MA-132239, Lawrence Livermore National Laboratory, 1998.
[37] W.D. Henshaw, A high-order accurate parallel solver for Maxwell’s equations on overlapping grids, SIAM J. Sci. Comput. 28 (5)

(2006) 1730–1765. URL http://link.aip.org/link/?SCE/28/1730/1.

http://seesar.lbl.gov/anag/chombo
http://www.caip.rutgers.edu/~parashar/dagh/
http://www.caip.rutgers.edu/tassl/projects/grace/
http://www.llnl.gov/casc/SAMRAI
http://www.llnl.gov/casc/SAMRAI
http://link.aip.org/link/?SCE/28/1730/1

7502 W.D. Henshaw, D.W. Schwendeman / Journal of Computational Physics 227 (2008) 7469–7502
[38] W. Henshaw, Ogen: an overlapping grid generator for Overture, Research Report UCRL-MA-132237, Lawrence Livermore National
Laboratory, 1998.

[39] D. Quinlan, A++/P++ class libraries, Research Report LA-UR-95-3273, Los Alamos National Laboratory, 1995.
[40] A. Sussman, G. Agrawal, J. Saltz, A manual for the Multiblock PARTI runtime primitives, revision 4.1, Technical Report CS-TR-

3070.1, University of Maryland, Department of Computer Science, 1993.
[41] W. Gropp, E. Lusk, R. Thakur, Using MPI-2: Advance Features of the Message-Passing Interface, The MIT Press, Cambridge, MA,

1999.
[42] M. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man Cybernet 21 (1991) 1278–

1286.
[43] B.T.N. Gunney, A.M. Wissink, D.A. Hysom, Parallel clustering algorithms for structured AMR, J. Parallel Distrib. Comput. 66 (11)

(2006) 1419–1430.
[44] C.A. Rendleman, V.E. Beckner, M. Lijewski, W.Y. Crutchfield, J.B. Bell, Parallelization of structured hierarchical adaptive, mesh

refinement algorithms, Comput. Visual. Sci. 3 (2000) 137–147.
[45] B. Hendrickson, K. Devine, Dynamic load balancing in computational mechanics, Comput. Methods Appl. Mech. Eng. 184 (2)

(2000) 485–500.
[46] H. Johansson, J. Steensland, A performance characterization of load balancing algorithms for parallel SAMR applications, Technical

Report 2006-047 2006-047, Uppsala University, Information Technology, 2006.
[47] S. Chandra, M. Parashar, J. Ray, Dynamic structured partitioning for parallel scientific applications with pointwise varying

workloads, in: Parallel and Distributed Processing Symposium, 2006, p. 10.
[48] M.H. Carpenter, D. Gottlieb, S. Abarbanel, W.S. Don, The theoretical accuracy of Runge–Kutta time discretizations for the initial

boundary value problem: a study of the boundary error, SIAM J. Sci. Comput. 16 (1995) 1241–1252.
[49] A.K. Kapila, D.W. Schwendeman, J.J. Quirk, T. Hawa, Mechanisms of detonation formation due to a temperature gradient,

Combust. Theory Model. 6 (2002) 553–594.

	Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement
	Introduction
	Model equations
	Overlapping grids with adaptive mesh refinement
	Overlapping grids
	Adaptive mesh refinement
	Time-stepping algorithm

	Parallel approach for overlapping grids with amrAMR
	P++ distributed arrays
	Distribution of grids and grid functions
	Interpolation
	Overlapping grid interpolation
	AMR interpolation

	AMR regridding
	Load balancing

	Discretization of the governing equations
	Discretization of the advection-diffusion advection-diffusion equation
	Discretization of the reactive Euler equations

	Numerical results
	Test problems for an advection-diffusion advection-diffusion equation
	Tests using a box-in-a-box grid
	Tests using a sphere-in-a-box grid

	Shock diffraction by a sphere
	Solution behavior and accuracy
	Parallel performance

	Detonation initiation in a T-shaped pipe

	Conclusions
	References

